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ABSTRACT

The increasing prevalence of webshell attacks poses a significant threat to web

application security, necessitating the development of robust detection mechanisms.

The dissertation clearly identifies two research directions: scanning web application

source code and in-depth analysis of HTTP traffic to detect webshells. First, the

dissertation proposes an advanced DL-Powered Source-Code Scanning Framework,

called ASAF, that integrates signature-based techniques with deep learning algo-

rithms to enhance the detection of both known and unknown webshells. We design

the framework to facilitate the creation of customized detection models for various

programming languages. For the interpreted language, the study chose PHP; for the

compiled language, the dissertation chose ASP.NET to build a complete ASAF-based

model for experimentation and comparison with other research results to prove its

effectiveness.

Second, the dissertation introduces a deep neural network that utilizes real-time

HTTP traffic analysis of web applications to detect webshells. The study proposes an

algorithm to improve the loss function applied in the deep learning model to solve the

problem of data imbalance. To demonstrate its effectiveness, we experimented with

and compared the model to other studies on the same CSE-CIC-IDS2018 dataset. We

have also integrated the model with the NetIDPS system to improve its capacity to

identify new webshells. From there, proactively prevent these attacks by automatically

adding attack source IPs to the blacklist and creating rules to block URIs querying

webshells on the web server.

This research contribution has been demonstrated through 01 national patent, 2

SCI-E journals, 1 E-SCI journal, 1 national journal, 2 WoS conference papers and 1

pending patent, as well as being practically applied in the national research project,

code number KC01.19/16-20, granted by Ministry of Science and Technology of Viet-

nam.
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INTRODUCTION

Research Motivations

Webshell Attack The advancement of web development technology has made web

applications more and more popular, gradually replacing traditional native appli-

cations because they do not depend on the operating system. Programming a web

application is now very easy, even for amateurs, with just a few drag-and-drop actions

[25, 13]. Along with this, the issues of information security for the web system have be-

come increasingly important. Malicious code injection (webshell) attacks [34, 87, 65]

are the most common and also the most hazardous sort of web application attack

[29]. According to the recent Microsoft 365 Defender data [2], the use of webshell

attacks not only continued but also accelerated every day. Webshell attacks [93] pose

a severe threat to organisations due to the extensive damage and vulnerabilities they

introduce after compromising web-facing servers.

As pieces of malicious code written in common web development programming lan-

guages (e.g., ASP, PHP, and JSP) [58, 63] that are installed on web servers, webshells

allow attackers to remotely execute arbitrary system commands, exfiltrate sensitive

files, install additional payloads, and pivot laterally into internal networks. Attackers

can also use webshells to maintain stealthy persistence in order to prolong exploita-

tion after the initial breach. Many advanced webshells feature extensive capabilities

via graphical user interfaces, including brute-forcing credentials, uploading malware,

and interacting with databases. Once a webshell is uploaded, attackers have an unre-

stricted foothold within the victim’s infrastructure. Webshells are especially danger-

ous due to their ability to bypass conventional network perimeter defences by using

allowed protocols like HTTP or HTTPS [88]. Their flexible and compact nature also

allows webshells to evade detection through obfuscation and polymorphism [6, 62].

Overall, webshells represent a serious threat due to their role as a pivot point, enabling

an unimpeded gateway for attackers.

1
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Advances in detection techniques have struggled to keep pace as attackers con-

tinually release new, heavily obfuscated webshell tools to evade defenses. Manual in-

spection is time-consuming, given that a single webshell update could require hours of

expert reverse engineering. Detecting obfuscated webshells poses significant challenges

for security research. Attackers are continuously adapting exploitation techniques to

evade detection, deploying webshells encoded by means such as base64 or hex encod-

ing, and using custom encryption schemes. According to analysis from Cloudflare,

over two-thirds of webshells exhibit some form of obfuscation. Advanced polymor-

phic webshells such as “Chameleon” can rapidly mutate appearances across attacks

while maintaining core malicious functions. The ease of automating webshell obfus-

cation and morphing has outpaced improvements in detection approaches tailored to

discerning underlying patterns amid intentionally distorted malcode. Defenders also

face challenges in obtaining robust datasets spanning various obfuscation schemas

needed to train machine learning models.

Webshell Detection

Two primary approaches exist across the spectrum of webshell detection: Network-

based Analysis and Source Code Analysis.

Network-based analysis webshell detection [90] operates by analysing web traffic

as it enters or exits the network perimeter. This is commonly implemented through

Web Application Firewalls (WAFs) [12, 37] or Intrusion Detection and Prevention

Systems (IDPSs) [64, 11, 10, 17] examining packets and connections. Detection works

by identifying anomalous patterns in network traffic that are different from how a le-

gitimate application should work. For example, the WAF could detect unusual HTTP

request parameter names, uncommon user-agent strings, excessively long request con-

tent lengths, or other characteristics that signal a webshell payload. Network security

devices build detection rules based on common webshell patterns or by observing

benign traffic to flag outliers. Rules must be constantly updated to catch new and

modified webshells in the endless evolution of attacker tradecraft. A major advantage

of network-based webshell detection is the ability to catch both inbound attacks as

well as outbound commands and control. Monitoring perimeter traffic enables catch-

ing webshell upload attempts and immediately blocking malicious IPs. The network

view also enables examining outbound connections for communications indicative of

an active webshell, such as unexpected shell prompts or terminal commands. Net-

work detection faces limitations in identifying highly obfuscated webshells designed
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to mimic legitimate traffic through extensive encoding and morphism. Skilled attack-

ers can often craft webshells that evade signature-based detection systems.

Source code analysis takes yet another approach by directly analysing web applica-

tion source code for webshell using analysis tools. Code analysis works by inspecting

repositories for suspicious functions, commands, file inclusions, or other constructs in-

dicative of a webshell payload. This enables identifying inactive webshells injected into

the code before production deployment. Analysing source code rather than running

software provides the ability to catch webshells compiled directly into applications.

However, code analysis faces challenges in detecting highly obfuscated or customised

webshells [9, 57] designed to mask their malicious intent. Without runtime context,

benign code can also generate false positives.

AI-Powered for Webshell Detection

Today, the advent of Machine Learning (ML) and Deep Learning (DL) techniques

has revolutionised the field of cybersecurity, particularly in the domain of webshell

detection.

Code analysis techniques, leveraging ML/DL algorithms, involve the extraction

and analysis of features from webshell code, encompassing syntax, semantic struc-

tures, and behavioural patterns in identifying malicious code. The authors in [31]

utilise vectorized opcode sequences extracted from PHP webshells to evaluate an

NB-opcode model, achieving 97.4% accuracy. The authors in [22] propose a com-

bination of random forest classifier and GBDT classifier to detect PHP webshells,

achieving accuracy and false positive rates of 99.169% and 0.682%, respectively. The

authors in [7] propose an ensemble detection model consisting of Logistic Regression,

Support Vector Machine, Multi-layer Perceptron, and Random Forest to detect PHP

webshell. The experiment demonstrates that their model could improve the accuracy

rate up to 99.14%. The authors in [66] propose a matrix decomposition algorithm us-

ing statistical features extracted from known webshells. This matrix is used to weigh

the features applied to the supervised machine learning algorithm to detect multi-

lingual webshells, but their accuracy was not high. It can be seen that most of the

research focuses on the PHP language, because PHP is the most popular server-side

programming language today. Very few studies have the ability to detect other types

of webshells, such as ASP.NET, JSP, Perl, or Python, or if they do, the accuracy is

not high and cannot be applied in practice.

ML/DL also facilitates webshell detection by enabling deep inspection of network
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traffic patterns. These models can analyse network packet attributes like source and

destination IP addresses, payload data, communication protocols, and timing infor-

mation to extract sophisticated features that indicate webshell activity. Furthermore,

their ability to analyse large volumes of normal background network traffic to iden-

tify abnormal activity makes them suitable for real-time detection in high-traffic

environments. The authors in [91] combine the characteristics of convolutional neural

networks and long short-term memory networks to detect the existence of Webshell

in network traffic. To do so, they propose a character-level method to transform the

Webshell content feature to archive 98.51% F1-score. The authors in [88] propose a

runtime webshell detection system analysing HTTP requests. It uses a Support Vec-

tor Machine (SVM) classifier that was trained on preprocessed and vectorized HTTP

requests. The preprocessing includes decoding the GET and POST parameters, and

the SVM sorts the requests into three groups: suspicious, attack, and benign. The

authors in [68] proposed a Word2Vec-based method to vectorize the HTTP requests.

These vectors will be used as input data for the CNN model to classify malicious

HTTP requests from normal types. The model shows a better result compared to

other traditional machine learning models such as NB, DT, and SVM. There are a

lot of studies that detect webshells by analysing network traffic, but more than half

of the studies focus on intrusion detection and the classification of types of cyber

attacks and are unlikely to detect new types of webshells.

The increasing sophistication and variety of webshells, particularly those designed

to evade traditional detection methods, underscores the urgent need for advanced tech-

niques to improve their detection. Many studies demonstrate the effectiveness of us-

ing ML and DL algorithms to improve the ability to detect new variants of webshells.

However, these studies still have certain limitations, and there is much room for im-

provement. This is the main motivation for us to conduct this dissertation.

Research Challenges

The research context analysed above shows that webshell detection algorithms that

can be applied in practice still face a number of challenges, as follows:

1. The diversity of webshell languages underscores the dynamic landscape

of cybersecurity threats and defensive measures. These languages encompass a

spectrum ranging from widely used scripting languages like PHP, Python, and
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Perl to more specialised ones such as ASP, JSP, and Ruby. Each language offers

unique features and capabilities; therefore, how to represent the source files so

that the functionalities of the webshell can be fully expressed is the issue. There

are various lines of research being pursued right now to find webshells in source

code files utilising AI techniques applied to image recognition or natural language

processing. However, the downside of most of these methods is that they convert

almost the original content of the source files into a matrix, which will no longer

be valid for the webshell that equipped code obfuscation, code encryption, or

evasion techniques. Understanding this diversity is paramount for cybersecurity

professionals to develop robust defence strategies and safeguard against webshell-

based attacks.

2. Advanced webshells often exhibit complex functionalities and evasion tech-

niques, leveraging obfuscation, encryption, and polymorphism to conceal their

presence and evade detection by traditional security measures [74]. They are

obfuscated to obscure the original source code while maintaining functionality.

The primary purpose is to evade detection by security mechanisms and make

it harder to identify and remove the malicious code. Webshells use polymorphic

techniques, where the code changes its structure each time it is executed. Tradi-

tional signature-based methods relying on fixed patterns or codes are less effective

against polymorphic webshells. A fileless webshell is a sort of webshell that does

not write any files to the disc of the target machine like typical webshells. They

exploit legitimate system tools and utilities to execute arbitrary commands with-

out the need for persistent files. As a result, detection requires more advanced

techniques, such as behaviour-based monitoring, anomaly detection, and runtime

analysis of memory activities.

3. Quality of the datasets is one of the key factors in the development of webshell

defence techniques. However, since webshell is sensitive data, there will not be

many official, reliable data sources willing to share it. Furthermore, new webshell

variants and techniques are constantly emerging, and hackers never share these

new webshells for free until they become obsolete. There are currently some

open webshell datasets such as Tenc 1 and WebSHark 1.0 [41] datasets. Another

difficulty is that, in the case of false positives and negatives, we cannot guarantee

100% of the collected data to be classified correctly.

1tennc, Tennc, https://github.com/tennc/WebShell, 2021
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4. Accuracy, detection speed, and resource usage are three criteria for any

cybersecurity solution. These three criteria are always closely linked, but in op-

posite directions. In webshell detection problems, the big challenge is to build a

solution while attaining both criteria of accuracy in the detection of advanced

webshells, detection speed fast enough to minimise damage to the system, and

optimising resource use. Signature-based webshell detection solutions can give

very fast results but are only effective against known webshells. As for unknown

webshells, it is necessary to use deep analysis techniques that often consume a

lot of resources and time.

5. The ability to integrate with information security systems is an important fac-

tor if the solution is to be applied to practical use. For example, network-based

analysis for webshell detection must be able to integrate with IDPS to automati-

cally update rules so that the system blocks IP hackers as soon as anomaly signs

are detected.

Objectives of Dissertation

The main objective of the dissertation is to propose webshell detection methods

that employ the deep learning models in order to improve the performance in term of

accuracy and effective. To achieve the main objective of the dissertation, four specific

objectives are as follows:

• Objective 1: Overview of webshell, the most advanced techniques used by hackers

to hide or evade their webshell attack. Research webshell detection techniques

and analyse the advantages and disadvantages of each method. Evaluate the

results of the latest research on the problem of detecting webshell attacks.

• Objective 2: Proposing an DL-Powered Source Code Analysis Framework, namely

ASAF, that combines signature-based techniques with deep learning algorithms.

This hybrid approach enables the rapid and accurate detection of both known

and unknown webshell types. The proposed framework provides a guideline for

developing specific models tailored to various programming languages.

• Objective 3: Based on the proposed framework above, develop two comprehensive

systems tailored to detect webshell attacks using PHP (interpreted language)

and ASP.NET (compiled language). The deep learning models integrated into



7

the systems must be optimised for their specific webshell detection problems to

ensure effective detection with minimal computational resources. The detection

results of the systems must be compared with those of other studies to prove

their effectiveness.

• Objective 4: Proposing a deep learning model for webshell attacks that per-

form in-depth analysis of HTTP queries directed at web application systems,

effectively identifying queries that indicate both known and unknown webshell

attacks. The model is capable of seamlessly integrating into NetIDPS, demon-

strating its practical applicability for automatic blocking of suspicious webshell

attack source addresses in real-time.

Research Scope

To achieve the objectives of this dissertation, we focus on the following key areas:

1. Researching web application source code files for code structure, as well as the

obfuscation and evasion techniques hackers employ to conceal their malicious

actions.

2. Researching machine learning and deep learning models to effectively detect web-

shell, especially advanced webshells.

Methodologies

The research methodology for the dissertation is conducted in a systematic manner,

as described in the following:

• Theoretical Methodology:We take a survey, synthesize, and evaluate previous

research relevant to the dissertation in order to analyze the achieved result and the

remaining problems that need further research in the direction of the dissertation.

Documents and information are mainly collected from articles in prestigious scientific

journals on the ISI/Scopus list and proceedings of specialized scientific conferences

from reputable online libraries. IEEE Xplorer 2, ACM Digital Library 3, SpringerLink

2(https://ieeexplore.ieee.org)
3(https://dl.acm.org)
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4, ScienceDirect 5, Wiley Online Library 6.From there, select the remaining problems

in webshell detection models and use machine learning to research and propose more

effective detection models.

• Experimental Methodology:

To evaluate the effectiveness of webshell detection models using web application

source scanning, we used the self-built datasets consisting of 11,362 PHP files (7,275

benign files and 4,087 Webshell files) and 5411 ASP.NET files (3,347 benign files and

2,064 Webshells). These are sets of data we collected from reputable, selected, and

verified sources, including github source-sharing libraries and domestic and interna-

tional webshell research groups.

To evaluate the effectiveness of a webshell detection model using deep analysis of

network traffic, we used the CSE-CIC-IDS2018 data set from the Canadian Institute

for Cybersecurity to objectively compare the efficiency of the proposed model with

other related studies and the self-built dataset through our test bed to assess the

ability of the model to detect advanced webshell attacks.

We test the models proposed in the dissertation using the above data set and

compare their effectiveness with the results of other studies related to webshell attack

detection.

Research Contributions

The dissertation has the following contributions:

1. Proposing an DL-powered source code scanning framework for webshell detection

that combines signature-based techniques with deep learning algorithms. This

framework provides guidance for developing specific models for accurate and

efficient webshell detection in a variety of programming languages. For each type

of interpreted and compiled programming language, we chose PHP and ASP.NET

as the most popular languages of each type to build a webshell detection model

based on ASAF. We conducted experiments and compared the above model

with other studies to prove the effectiveness of ASAF. This contribution have

been presented in four publications, including one article in the SCI-E/Scopus

journal [LVH-J1], one article in an international journal [LVH-J3] (indexed by

4(https://link.springer.com)
5(https://www.sciencedirect.com/)
6(https://onlinelibrary.wiley.com)
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E-SCI until 2023), one article in the national journal of science and technology

on information security [LVH-J4], and one paper at the WoS/Scopus conference

[LVH-C1]. Methods for detecting malicious code in web application source code

using PHP and ASP.NET have also been registered for patents at the Department

of Intellectual Property, Ministry of Science and Technology [LVH-P1, LVH-P2].

In particular, the method for detecting ASP.NET webshells was granted a patent

on May 19, 2023.

2. Propose a deep learning model to thoroughly analyze the HTTP traffic to the

web application server in order to quickly detect webshell queries. To solve the

problem of data imbalance for training sets, we also propose an algorithm to

improve the quality of training sets employed in the deep learning model. To

demonstrate its effectiveness, we experimented with and compared the model to

other studies on the same CSE-CIC-IDS2018 dataset. The deep learning model

can work with the intrusion detection and prevention system to add attack source

IPs to a blacklist and proactively block URI queries to webshell on the web server

before they happen. This contribution have been presented in two publications:

one article in the SCI-E/Scopus journal [LVH-J2], one paper at the WoS/Scopus

conference [LVH-C2].

Dissertation Structure

This dissertation has three main chapters, each with the following main contents,

in addition to the introduction and conclusion.

• Chapter 1 provides an overview of webshells, methods for detecting webshell

attacks, the use of ML/DL in webshell detection, a review of scientific literature,

and criteria for evaluating the effectiveness of ML/DL models.

• Chapter 2 proposes an DL-powered source code scanning framework that com-

bines signature-based techniques with deep learning algorithms. This hybrid ap-

proach enables the rapid and accurate detection of both known and unknown

webshell types. The proposed framework provides a guideline for developing spe-

cific models tailored to various programming languages. Based on the proposed

framework above, we will develop two comprehensive systems tailored to detect

webshell attacks using PHP and ASP.NET.
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• Chapter 3 proposes deep learning model for webshell attacks that perform in-

depth analysis of HTTP queries directed at web application systems, effectively

identifying queries that indicate both known and unknown webshell attacks. We

experiment with the model on two datasets and compare the results with those

of other studies to showcase its effectiveness. We have also integrated the model

into a NetIDPS system to automatically block suspicious source addresses in

real-time, ensuring its practical applicability.



Chapter 1

THEORETICAL

BACKGROUND AND

PRELIMINARIES

In this chapter, we will present some basic knowledge about webshell, webshell

evasion techniques, and webshell detection approaches, as well as analyze and evaluate

the results achieved by related works.

The dissertation then identifies scientific gaps in this context, determines the re-

search direction of the dissertation, and serves as a basis for highlighting new contri-

butions in the following chapters.

1.1 Fundamental Concepts

1.1.1 Web Application

A typical web application architecture consists of three fundamental components:

• Web Browser: This is the client-side component that serves as the primary inter-

face for user interaction. It receives user input, manages presentation logic, and

controls user interactions with the application. Additionally, it may validate user

inputs for data integrity and security purposes when necessary.

• Web Server: also known as the server-side component, is in charge of handling the

application’s business logic. It routes user requests to the appropriate components

11
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Figure 1.1: The conversion process from programming languages to machine code

and oversees the application’s overall operation. It has the capability to handle

requests from a diverse range of clients.

• Database Server: is responsible for providing the application with the necessary

data. It manages data-related tasks such as storage, retrieval, and manipulation.

In multi-tiered architectures, database servers may also handle business logic

tasks with the assistance of stored procedures.

The web server utilizes the HyperText Transfer Protocol (HTTP) along with other

protocols to receive user requests through a web browser. The web server then pro-

cesses these requests, applying business logic to fulfill them. The web server then

delivers the requested content to the end-user, facilitating their interaction with the

web application. As a result, the server side will need a programming language to

handle requests sent from the client side (browser). A programming language con-

sists of a set of commands, syntax, and semantics used to control a computer and

perform a specific job. Several systematic steps transform a high-level programming

language into machine language, transforming human-readable code into executable

instructions that a computer’s hardware can comprehend and execute. Initially, lexical

analysis breaks down the high-level language source code into individual tokens such

as keywords, identifiers, operators, and literals. After lexical analysis, the program

undergoes syntax analysis to conform to the programming language’s syntactic rules,
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creating a hierarchical structure known as the abstract syntax tree. We then conduct

semantic analysis to confirm the meaning and context of statements, identifying any

errors or inconsistencies in the program’s logic. Once the semantic analysis success-

fully completes, it generates an intermediate representation of the program, not only

providing a platform-independent representation of the program’s logic but also fa-

cilitating optimization and code generation. Before the final step of code generation,

you can apply optional optimization steps to enhance the efficiency and performance

of the program. During code generation, the program is translated into machine code

or bytecode, which converts high-level language constructs into equivalent instruc-

tions in the target machine architecture. The computer’s processor then executes

this generated machine code, enabling the desired computations or actions specified

by the original high-level program. The comprehensive conversion process 1.1 entails

the coordination of various components, such as compilers, interpreters, and runtime

environments, to ensure accurate and efficient translation from high-level program-

ming languages to machine language. Before execution, a compiler compiles the entire

program into machine code. An interpreter interprets the program during execution,

line by line or statement by statement. In addition to the web server software (such

as Apache, IIS, or Nginx) responsible for establishing a connection and transferring

data using the HTTP protocol between the browser and the web server, a web server

consists of numerous other components. The figure 1.2 represents Apache Web Server

architecture. The PHP interpreter is responsible for converting source code into oper-

ation code (OpCode), helping the server perform logical processing and return results

to the web client.

• Interpreter

An interpreter is a computer program that helps the CPU directly execute in-

structions written in a programming or scripting language without requiring prior

compilation into a machine language program. If the web application is programmed

in an interpreted language, the result file of the translation process will not be visible,

and the website will include source code files in programming language form.

• Compiler

A compiler is a computer program that translates a series of statements of a pro-

gramming language, called source code, into an equivalent program but in the form

of a computer language. The CPU, or virtual machine, will execute the object code

or machine code generated by the compiler.
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Figure 1.2: Example of apache web server architecture

Figure 1.3: Interpreter

A decompiler is a type of compiler that converts from a low-level programming lan-

guage to a high-level language, while a layered compiler converts from one high-level

language to another high-level language or to an intermediate language for further

processing.

A website programmed in a compiled language will see the results of the translation

process. The website will include source code files in programming language form,

intermediate code files, or machine code files.

1.1.2 Webshell Attack

A webshell is often a small piece of malicious code injected on web servers by

attackers to grant remote access and code execution that is written in popular web
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Figure 1.4: Compiler

development programming languages (e.g., ASP, PHP, and JSP). Webshell is an entry

point that gives hackers the ability to execute commands on servers to steal data or

to utilize the server as a base for other attacks like lateral movement, the deployment

of additional payloads, or hands-on keyboard activity, all while remaining undetected

inside a target. However, a webshell itself cannot attack or exploit a remote vulnera-

bility, so it is always the second stage of an attack, named post-exploitation.

As a typical example, Hafnium, a Chinese cybercriminal organization, carried out

the recent significant webshell attack that made news in March 2021. A malware

program called China Chopper [1] was used in the attack as the webshell, and it was

injected through a critical vulnerability in Microsoft Exchange Servers. The China

Chopper comes in a little box but packs a big punch. In just 4 kilobytes of space, the

easy-to-use webshell graphical user interface allows even beginners to handle files and

databases, obfuscate code, and more. Even after patching the server vulnerability, the

China Chopper webshell’s backdoor remained in the compromised system, rendering

it exceptionally harmful.

The attack is shown in Figure 1.5, where a hacker exploits an existing vulnerability

in the webserver to install a malicious code file into the webserver directory and then

commands it to run the file by making a request through the web browser. Executing

infected files causes a persistent breach in the web server, allowing a hacker to launch

any cyberattack.

To find servers to target, common hackers search the internet, frequently utiliz-

ing scanning tools like Shodan.io. They have been known to quickly exploit recently

discovered vulnerabilities, as well as previously patched ones that still exist on many

servers. As for APT attacks, they are highly sophisticated and targeted cyberattacks
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Figure 1.5: China Chopper webshell client.

conducted by well-funded and organized threat actors, often with nation-state back-

ing or significant resources. APT attacks are characterized by their long-term and

persistent nature, as the attackers focus on maintaining access to a compromised sys-

tem or network over an extended period of time to achieve specific objectives. Due

to their complexity, APT attacks require a comprehensive cybersecurity strategy in-

volving proactive monitoring, threat intelligence, intrusion detection systems, regular

security assessments, employee training, and incident response plans. To minimize

potential damage, organizations must be prepared to detect and respond to APT

attacks quickly and effectively.

Basically, a webshell attack is divided into four stages, as shown in the Fig. 1.6:

Finding and Exploiting Vulnerabilities, Persistent Remote Access, Privilege Escala-

tion, Pivoting, and Launching Attacks.

Figure 1.6: Four Stages Of webshell Attack.

1. Finding and Exploiting Vulnerabilities: Hackers gather information about

their target by using various tools and techniques. This includes identifying open
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ports, services running on those ports, and potential weaknesses in those services

in the target’s infrastructure. Once hackers identify potential weaknesses, they

assess them to determine if they are actual vulnerabilities. If a vulnerability is

confirmed, the hacker proceeds to exploit it.

2. Persistent Remote Access: After successfully exploiting the identified vul-

nerability, the hacker may deliver a malicious payload to the target system.

Webshell scripts provide a backdoor allowing attackers to remotely access an

exposed server. Persistent attackers do not have to exploit a new vulnerability

for each malicious activity. Some attackers even fix the vulnerability they exploit

to prevent others from doing the same and avoid detection. Some webshells use

techniques such as password authentication to ensure that only specific attackers

can access them. Typically, webshells conceal themselves with code, preventing

search engines from blacklisting the website hosting the shell.

3. Privilege Escalation: Webshells normally run with user permissions, which

can be limited. Attackers can escalate privileges through webshells by exploit-

ing system vulnerabilities to acquire root privileges. Root account access allows

attackers to perform almost any action—they can install software, change per-

missions, add or remove users, read emails, steal passwords, etc.

4. Pivoting and Launching Attacks: Attackers can use webshells to pivot to

additional targets, both in and out of the network. Sniffing network traffic to

identify live hosts, firewalls, or routers (enumeration) can be a time-consuming

process for attackers, taking weeks to complete. An attacker who successfully

persists on a network will move patiently, possibly even using a compromised

system to attack other targets. This allows the attacker to remain anonymous,

and pivoting through several systems can make it virtually impossible to trace

attacks to the source. An attacker can use webshells to connect servers to a

botnet, a network of systems under their control. The affected servers execute

commands sent by attackers through a command-and-control server connected to

the webshell. This is a common technique for DDoS attacks that require extensive

bandwidth. Attackers are not directly targeting the system where they installed

the webshell, but rather exploiting its resources to attack more valuable targets.

Many web application programming languages implement functions such as exec(),

eval(), system(), and os(), or process strings as syntax with special characters (such as
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“ ‘”, or backtick, in the case of PHP) that can be used to execute system commands.

In cyberattacks, threat groups abuse this functionality by smuggling these default

functions and commands via webshells, allowing for remote tasking and code execu-

tion. The scope of code execution are arbitrary, limited only by the capabilities of

the underlying victim server operating system shell. The following are some common

post-installation reconnaissance commands that attackers initially use:

• whoami

• netstat

• ip route or route print

• ls –latr or dir

• uname –a or systeminfo

• ifconfig or ipconfig

This set of commands allows the attackers to get their bearings within the victim

system and understand what kind of privileges are available from the perspective

of the compromised server. Additionally, attackers gain the ability to discover what

applications and data reside on the local file system and perform additional recon-

naissance to determine their next action in relation to escalating access or moving

laterally to another host.

To enable webshell functionality, attackers may choose to upload new files to the

compromised web servers, or they may add webshell functionality and code to an

already-existing resource on the server. The attacker opts for this action to prevent

any potential suspicion in the event of monitoring file creation events.

It gets even more complicated when an attacker finds a web application parameter

that is already being used as input in one of these risky default functions (like a

web form or an interactive application). This lets the attacker use webshell without

having to upload a backdoor to the victim server. The downside of this approach is

that it allows remote tasking input and output to flow across the network without

any obfuscation, potentially leading to detection by monitoring services. However, we

would briefly use this capability to transition remote access to a more covert method.

Webshell behavior is highly dependent on the configuration of the compromised

web service. Rather than opening a new network service, like a traditional bind im-

plant (which would be relatively simple to detect and alert on), webshells most often
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use the preexisting HTTP (S) service already hosted on the victim system to facil-

itate backdoor access. For instance, if the web service operates on HTTP 80/TCP,

the webshell will also be reachable through the same protocol. However, if the web

service is hosted on HTTPS 443/TCP, the webshell will also use 443/TCP and in-

herit any existing SSL/TLS configuration, including using the legitimate victim web

application SSL/TLS certificate and all associated metadata for connections flowing

to the webshell. This is one of the reasons why webshells, compared to other types

of implants, have the potential to remain undetected for longer periods. Simply put,

they become lost in the daily HTTP noise.

Threat actors commonly chain together obfuscation techniques to conceal the true

functionality of the webshell and avoid detection. These techniques are often used in

combination and include, but are not limited to:

• String rotations

• Array segmentation

• Hex encoding

• Base64 encoding

• Compression

• Whitespace removal

Many webshells found in the wild also encrypt remote command input and output

with hard-coded pre-shared keys. While code obfuscation or encryption isn’t a new

concept in cyber attacks, it introduces an additional layer of challenge when it comes

to detecting and investigating webshell implants.

1.1.3 Webshell Classification

Webshells can have many different classifications based on characteristics, scripting

languages, capabilities, etc [50]. The following is the most common classification based

on programming language:

1. PHP webshells: [33] These are written in PHP, a most widely used scripting

language for web development, according to statistics from W3Techs 1. When

1https : //w3techs.com/technologies/overview/programming_language
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accessed through a web browser, PHP webshells embedded within PHP files

execute on the server.

2. ASP/ASPX webshells: Written in Active Server Pages (ASP) or ASP.NET

(the second most popular server-side programming language after PHP), These

webshells target Windows servers running Microsoft technologies.

3. Others Server-side Programming Language webshells: In addition to

PHP and ASP.NET, there are some webshells written in other server-side pro-

gramming languages, such as Java Server Pages (JSP) webshells [18], which are

deployed on servers running Java technologies; Perl webshells, which can be exe-

cuted on servers that support Perl scripting; Python and Ruby webshells, which

are less common than other types but still pose a threat; and so on.

4. Shell Script webshells: These webshells are based on various shell scripting

languages, like Bash or PowerShell, and are used to execute system commands

on the server.

Besides, another classification method is based on the way the webshell communi-

cates with the hacker’s control computer.

Figure 1.7: Webshell Classification Based On Communication.

1. Bind Shell: is a type of shell that listens to a specific port and waits for in-

coming connections. The bind shell establishes a connection and provides a shell

interface to the remote machine, enabling the user to execute commands on the
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target system. Legitimate purposes, like remote administration, commonly uti-

lize this type of shell. The user can connect to the target machine from a remote

location and perform tasks, just as if they were sitting at the console. System

administrators often use bind shells to remotely manage servers, networked de-

vices, and other systems. By connecting to the bind shell, the administrator can

access the target system’s shell and perform tasks such as monitoring system per-

formance, updating software, and managing configurations. You can set up bind

shells using a variety of methods, including network protocols like Telnet or SSH.

To set up a bind shell, the administrator must specify the port to listen on and

configure the firewall to allow incoming connections. After setting up the bind

shell, the administrator can connect to the target system remotely and carry out

tasks as if they were physically present at the console. While bind shells can be

useful for remote administration, they also present a security risk. An attacker

could gain unauthorized access to the target system if you fail to properly secure

the binding shell. To prevent this, it is important to secure the bind shell with

strong authentication methods, such as passwords or public key authentication,

and to limit access to the bind shell to trusted users.

2. Reverse Shell: is a type of shell that creates a connection between a remote

machine and a target machine. Once the attacker establishes the connection,

they gain control over the target system, enabling them to execute commands,

run scripts, and carry out various tasks. This allows the attacker to take control

of the target system without the need for physical access. Typically, attackers

combine reverse shells with other attack types like malware infections or vulner-

abilities in web applications. The attacker may use a reverse shell to gain access

to sensitive information, such as passwords and confidential data, or perform

actions that compromise the security of the target system, such as installing

malware or modifying system configurations. To prevent reverse shell attacks, it

is important to implement secure network practices, such as firewalls, intrusion

detection systems, and anti-malware solutions. Additionally, it is important to

keep software and systems up-to-date with the latest security patches and to

educate users about the dangers of reverse shell attacks. With the proper pre-

cautions in place, it is possible to reduce the risk of reverse shell attacks and

protect sensitive information and systems from unauthorized access.

3. Double Reverse Shell: is a reverse shell, which separates the standard input
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and output channels. So two connections to the same port are created to the

attacker’s computer. Multiple layers of connection can help evade detection by

security systems. Even if the first reverse shell is detected and terminated, the

second one might still provide a backdoor into the system. It can help in bypassing

network restrictions and firewall rules more effectively

Each type of webshell has its own features and requires specific detection and

mitigation strategies. Some webshells consist of multiple files or components, making

them harder to detect. They might include various scripting languages and files for

different purposes. Some hackers use fileless webshells to carry out attacks. These are a

type of webshell that operates without leaving any traceable files on the compromised

system’s disk. Unlike traditional webshells, which involve uploading a script or code

to a server and saving it as a file, fileless webshells execute directly in memory or use

existing system tools and processes to achieve their objectives. Organizations should

be aware of the various types of webshells and take steps to protect their web servers

against these threats.

1.1.4 Webshell Evasion

Hackers employ various techniques to evade detection and enable webshells to by-

pass security defenses [14, 75, 92]. These evasion tactics manipulate the characteristics

of the webshell code, communication channels, and execution environment to avoid

detection by security systems.

One common tactic is obfuscation [42, 24] of the webshell payload source code

through methods like encryption, encoding, and polymorphism. Encryption hides the

true form of the code until runtime decryption. To transform the byte stream, en-

coding uses schemes like base64. Polymorphic webshells dynamically mutate on each

request while preserving core functionality. These obfuscation tactics allow webshells

to avoid signature matching against known patterns.

Another evasion strategy manipulates communication to disguise webshell traffic as

legitimate. Tactics include realistic impersonation of browser user agents, mimicking

common web parameters, blending timing and request distributions, and other forms

of traffic shaping. HTTPS encryption also hides malicious payloads. Webshells may

also exploit trust in authenticated paths to bypass firewall rules. Slow traffic rates

avoid flooding detection. Stealthy launch points, such as compromised servers, client

pivoting, and anonymous VPNs, mask the attack origin.
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On the server side, attackers exploit environment attributes to hide webshells.

Naming files with extensions identical to those of legitimate scripts evades behavioral

detection. Targeting interpreted languages like PHP with loose runtime coupling en-

ables masking malicious logic within application code. Writing webshells in native

languages enhances stealth.

Advanced webshells employ a variety of techniques to evade debugging or runtime

analysis attempts aimed at security inspection. To avoid inspection, Webshells remain

passive, disable core functions, or self-delete when they detect analysis. These anti-

analysis tactics complicate efforts to study and detect sophisticated webshells.

In summary, webshell authors leverage numerous techniques across the cyberkill

chain to evade defenses. Robust multi-layer detection combining network, host, au-

thentication, and code analysis is required to counter evasion threats. Models adaptive

to zero days, such as behavior profiling and deep learning, provide needed resilience

against obfuscation. Webshell detection must evolve as rapidly as attackers’ evasion

tactics.

The following is an example of an analysis of the Behinder, an obfuscated webshell

template. Behinder webshell accepts attacker input from HTTP POST requests. The

Behinder client shapes the attacker’s input into a valid class using the target web

server’s syntax, in this case PHP.

To recover attacker instructions from network traffic, the hardcoded pre-shared

key from the webshell script must be recovered. In this case, the default AES key

supplied by the source code is “e45e329feb5d925b” (first 16 characters of the MD5

hash of the “rebeyond” string). Before using the AES encryption key, the contents

undergo base64 encoding, necessitating the decoding of the string.

Deobfuscating the string reveals the arbitrary instructions passed to the server

as a PHP class. Operator instructions for the webshell are encoded inside the $cmd

parameter:

Before evaluation, the cmd parameter’s value undergoes base64 decoding. In our

example, the command “Y2QgL3Zhci93d3cvaHRtbC87d2hvYW1p” decodes to

cd /var/www/html/;whoami:

While obfuscation techniques can mask the contents of a script, in cases where TLS

is not being used, the query responses from the server will be displayed in plain text

via the web logs and PCAPs. To remain stealthy under these conditions, attackers

opt to also encrypt their webshell responses using the same hardcoded pre-shared
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Figure 1.8: Behinder webshell sample.

key. Successfully deobfuscating the script explains what it is capable of. However,

by obtaining the pre-shared key, one can further comprehend the input and output

generated from a compromised asset. Analysts can leverage this information when

they generate packet capture or HTTP application content logs of the event.

We can broadly classify evasion techniques into four main categories:

1. Obfuscation webshells refer to the practice of deliberately making a webshell’s

code more complex, convoluted, and difficult to read or understand. Obfusca-

tion’s primary goal is to hinder the detection and analysis of malicious code

by security tools and human analysts. Hackers often obfuscate webshell code

by adding random characters, whitespace, and "dead" code segments, renaming

variables and functions to non-descriptive names, or encoding it using various

methods (e.g., base64 encoding). Furthermore, they can modify the flow of con-

trol in the webshell code by adding conditional branches, loops, or jumps that are

not necessary for the program’s actual functionality. An encryption algorithm,

such as AES, RSA, DES, or another method, also encrypts the malicious code
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Figure 1.9: Decoding and decrypting the obfuscated string.

Figure 1.10: Contents of the deobfuscated function.

within the webshell. The chosen encryption algorithm and key encrypt the web-

shell’s payload, including its core functionality and commands. This transforms

the original code into ciphertext, which appears as random data. The webshell

embeds a decryption function. When the webshell executes, this function incor-

porates the necessary logic and key(s) to decrypt the encrypted payload. Upon

access or execution, the webshell dynamically decrypts its payload in memory.

This implies that the webshell never stores the encrypted code in its decrypted

form on disk, posing a challenge for detection through file-based analysis.

2. Manipulate Communication Protocols: In addition to obfuscating payloads,

webshells often manipulate communication protocols to masquerade as legiti-

mate web traffic. Mimicking expected patterns allows webshells to bypass net-

work monitoring and filtering defenses. Spoofing the characteristics of browser
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Figure 1.11: Decoded system command.

connections is a common tactic. To impersonate browsers, Webshell communi-

cations disguise their user-agent string. Accept headers, charset encoding, and

other browser quirks are copied. As a result, webshell traffic blends in with nor-

mal user web activity. Webshells also mimic common webpage parameter names,

values, and content types to avoid raising suspicion. For example, injecting com-

mands into standard $_GET and $_POST variables bypasses filters looking for

anomalies. Traffic shaping techniques are also common. Webshell communica-

tions are throttled to match expected human speeds and distributions, rather

than robotic rapid connections. Randomised delays, burst timings, and jitter are

used to avoid pattern detection. Protocol-level manipulations, such as HTTP

request smuggling or header splitting, are also used to bypass firewall rules and

evade WAF inspection. HTTPS encryption blinds sensors to malicious payloads.

3. Environmental Exploitation: Webshells often exploit weaknesses in the tar-

get environment to hide their presence and activities. Knowledge of security gaps

and platform intricacies allows attackers to covertly blend in. A common tactic

is to disguise webshells by using file names and extensions that are identical to

legitimate scripts in the web root. During directory scans, for example, naming

a PHP webshell as wp-load.php masks the payload as a WordPress bootstrap

script. Webshell authors also exploit opaqueness in interpreted web languages

like PHP that lack strong typing and runtime coupling. One can directly in-

ject malicious commands into loosely structured code and seamlessly integrate

them during dynamic execution. Platform architectural quirks are also leveraged.

Webshells abuse normal operations, such as register variable writing in PHP, to

force the execution of stealthy shell commands with no visible code hints. At-

tackers continue to hide webshells using compromised but trusted platforms and
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routes. Servers with prior malware implantation allow injected webshells to by-

pass suspicious-path filters. Client device pivoting and anonymous VPNs mask

the origin. Slow traffic rates help to avoid flooding, which triggers detection

rules. Distribution across multiple servers and accounts makes blacklisting diffi-

cult. Targeted execution timing during peak traffic periods increases stealth.

4. Anti Analysis or Debugging: Sophisticated webshells often incorporate anti-

analysis countermeasures designed to detect inspection environments and evade

detection. These techniques target security researchers attempting to analyze

webshell behavior through static and dynamic techniques. Webshells commonly

employ the tactic of fingerprinting the runtime environment characteristics to de-

tect sandboxes and debugging sessions. Webshells check properties like hardware

configurations, installed software versions, process runtimes, and file metadata to

detect simulated or manipulated conditions. Timing side channel checks are also

common. Webshells measure code block durations and compare them against

known benign thresholds. Low-level anti-debugging techniques are also employed

to identify debuggers. Webshells check for invalid instruction exceptions, mem-

ory breakpoints, observation hooks, and other artifacts introduced by debuggers.

Debugging and monitoring tools inherently impact system state. In order to de-

tect manipulation, webshells test CPU register contents, stack contents, network

sockets, and other attributes for expected values. Webshells can evade an inspec-

tion environment by disabling malicious functionality, deleting traces, refusing

to execute, or taking other actions. Obfuscation, combined with anti-analysis,

maximizes evasion.

These evasion techniques pose significant challenges for security professionals. They

make it more difficult for security tools such as intrusion detection systems (IDS),

web application firewalls (WAF), and antivirus software, as well as human analysts,

to identify and mitigate webshells. Evasion webshells are more likely to remain un-

detected for longer periods, allowing attackers to maintain access to compromised

servers. To defend against webshell evasion, organizations need a multi-layered secu-

rity approach that includes proactive monitoring, behavioral analysis, security audits,

and the use of security tools capable of identifying anomalies and suspicious behaviors

in web server traffic and activities.
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1.1.5 Webshell Feature

Webshells closely resemble benign webshells, which complicates their differentia-

tion. Previous studies have employed three types of metadata and five sets of features

to distinguish malicious webshells. Three distinct types of metadata are commonly

associated with webshells, each providing unique insights into their characteristics

and behaviors: source code, instruction sequence, and HTTP requests.

Figure 1.12: Classification of webshell features.

• Source code represents the textual programming statements that can be com-

piled to achieve functional goals on web servers. It offers syntactical, statistical, and

semantic features crucial for detecting malicious webshells. Various studies utilize

source codes as metadata. Nevertheless, source code data may contain noise due to

attackers adding meaningless or encrypted codes, and it lacks the reflection of dy-

namic behaviors during webshell executions.

• Opcode refers to the sequence of machine-level instructions or commands that

the webshell executes when it executes on a web server. Structured instruction data is

convenient for any analyzer. Analyzing such data helps to understand a webshell’s dy-

namic behaviors and real goals. The authors in [31, 70] showed that instruction-based

detections can achieve a higher accuracy than source code-based ones because sensi-
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tive function calls can be found more in the instruction sequence than in the source

codes of a malicious webshell. Therefore, instruction data have recently attracted

wide attention from researchers.

• HTTP Traffic are textual messages sent by clients to trigger actions on web

servers, offering statistical and semantic features useful for identifying malicious re-

quests associated with webshell activities. Analyzing HTTP traffic for webshell de-

tection involves scrutinizing the communication between clients and web servers to

identify patterns, anomalies, or signatures indicative of webshell activity. This analysis

typically involves capturing and inspecting HTTP requests and responses exchanged

between clients and servers, focusing on various attributes such as request methods,

URIs, headers, parameters, payloads, and response codes. However, extensive HTTP

traffic may encrypt and bury malicious HTTP requests, similar to textual source

codes, resulting in a relatively low number of studies addressing this aspect.

We organize the features extracted from Webshell into five distinct classes based on

their characteristics: lexical, syntactical, semantical, statistical, and abstract features.

• Lexical feature: These features pertain to the script’s textual structure. At-

tackers often employ specific keywords and obscure instructions and parameters

within the code to conceal their true intentions. As a result, such scripts exhibit a

limited number of strings and specific patterns within tags or comments. Lexical

features encompass factors like the count of strings and the presence of malicious

text patterns in comments.

• Syntactical feature: Syntactical features concern the expressions, variables,

and functions used within the scripts. Attackers may use system calls to gain ele-

vated privileges or employ hazardous functions for uploading malware or retriev-

ing critical files. Attackers can adapt the webshell to the target server platform

by using conditional statements, and they can expose passwords by using loops.

Common examples of syntactical features include the proportion of conditional

statements and loops, the invocation of risky functions, and the usage of specific

language components.

• Semantical feature: While lexical and syntactical features provide insights into

how webshells are structured, semantical features derive the intentions behind

the code from these lexical and syntactical elements. For instance, instead of

measuring the abundance of arbitrary loops within scripts, semantical features
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might focus on the presence of loops associated with port scanning function calls

or login access.

• Statistical feature: Malicious webshells often employ encrypted and obfus-

cated code to evade firewall detection. However, benign webshells may also use

encryption for security purposes. As a result, statistical features are critical in

distinguishing malicious webshells by comparing their statistical values to those

of normal files. Examples of such statistical features include measures like infor-

mation entropy and compression ratios.

• Abstract feature: Abstract features transcend the realms of lexical, syntacti-

cal, and semantical analysis. They are particularly useful in revealing concealed

elements of webshells that may remain undetected through syntactical and se-

mantic scrutiny. In the context of this study, abstract features encompass vec-

torized data, such as source code, opcodes, and web traffic. Deep learning-based

approaches predominantly harness these features.

Based on the correlation between the metadata and the features as shown in the

figure 1.12, two main webshell detection approaches are proposed: Source Code

Analysis Approach involves analyzing the source code or opcode of a web appli-

cation without executing it, and the Network-based Analysis Approach works

with network traffic to scrutinize the communication between clients and web servers.

It is important to note that no single approach can guarantee 100% detection of

webshells, and a combination of them may be necessary to effectively detect and

prevent webshell attacks. Regular monitoring and auditing of web applications and

servers are also crucial to detecting and preventing webshell attacks.

1.1.6 Operation Code (OpCode)

Opcodes 2, an abbreviation for Operation Code, represents the core instructions

processed by a computer’s central processing unit (CPU). It serves as a pivotal link

between the software and hardware layers of a computing system, encapsulating the

basic operations that the CPU can perform. Opcodes typically correspond to ele-

mentary tasks such as arithmetic, logical operations, data movement, and control

flow alterations. These operations form the foundation upon which complex compu-

2https://en.wikipedia.org/wiki/Opcode

https://en.wikipedia.org/wiki/Opcode
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tational tasks are built, making the opcode an indispensable component of modern

computing.

The structure of an opcode typically consists of two main components: the opcode

itself, which specifies the operation to be performed, and additional operands or pa-

rameters that provide context or data for the operation. The length and format of

opcodes can vary significantly depending on the CPU architecture and instruction set

design. For example, some CPUs use fixed-length opcodes, where each instruction oc-

cupies a predetermined number of bits, while others employ variable-length opcodes

to accommodate a wider range of instructions and address larger memory spaces.

According to the statistical results of Bragen and Simen Rune [16], who disassem-

bled 67 malware samples and 20 non-malicious ("goodware") samples, and extracted

the frequency of different x86 opcodes in each sample, they found that the opcode

distributions differed significantly between malware and benign samples. Specifically,

around 1/3 of the common opcodes occurred more frequently in malware, 1/3 oc-

curred less frequently, and 1/3 were similar to goodware. For rare opcodes (frequency

< 0.2%), around 70% occurred with similar frequency in malware and goodware,

30% occurred more frequently in malware, and 10% occurred less frequently. Statis-

tical tests revealed that the association between rare opcodes and malware class was

stronger than that for common opcodes, explaining 12-63% of the frequency variation

for rare opcodes versus 5-15% for common opcodes. The authors suggest that opcode

frequency analysis could potentially provide a faster way to detect malware, com-

plementing other malware detection techniques like signatures and heuristics. They

discuss potential improvements, such as looking at opcode sequences rather than just

individual opcodes, compiler-specific opcodes, and obfuscation/packing analysis. The

table 1.1 shows the list of the 15 most used opcodes by malicious files.

Within the context of web servers, opcodes, which are the fundamental building

blocks of instruction execution within web servers, play a pivotal role in facilitating

the identification and mitigation of web shell activities. Web shells typically consist

of obfuscated or disguised code fragments that blend into legitimate web application

files, making them challenging to detect using traditional signature-based approaches.

Security analysts, on the other hand, can develop heuristic algorithms and machine

learning models to distinguish between benign and malicious code behaviors by ana-

lyzing the opcode patterns generated by web shell scripts during execution. Opcodes

serve as an intermediary representation of the executed code, allowing security tools
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Table 1.1: Top 15 opcodes used exclusively used by malware

Opcode Description

stosq Store String

syscall Fast System Call

setno Set Byte on Condition - not overflow (OF=0)

cvtsd2si Convert Scalar Double-FP Value to DW Integer

movmskpd Extract Packed Double-FP Sign Mask

prefetcht1 Prefetch Data Into Caches

fprem Partial Remainder (for,compatibility with i8087 and i287)

cmpsq Compare String Operands

lodsq Load String

scasq Scan String

cvtss2si Convert Scalar Single-FP Value to DW Integer

fnsave Store x87 FPU State

orpd Bitwise Logical OR of Double-FP Values

fxsave Save x87 FPU, MMX, XMM, and,MXCSR State

movmskps Extract Packed Single-FP Sign Mask

to monitor and analyze the runtime execution flow for anomalous or suspicious ac-

tivities that indicate web shell presence. Security tools employ techniques like opcode

sequence analysis, control flow graph traversal, and opcode frequency profiling to

characterize the behavioral traits of web shells and develop effective detection strate-

gies.

Opcode sequence analysis entails examining the sequential patterns of opcodes gen-

erated during web application code execution and identifying characteristic sequences

commonly associated with web shell activities, such as file system manipulation, re-

mote command execution, or data exfiltration. Control flow graph traversal techniques

look at how the control flow depends on other opcode instructions in the web appli-

cation code. They look for oddities or changes from normal control flow patterns that

could mean someone is trying to inject or exploit the web shell. Opcode frequency

profiling aims to identify outlier opcodes or opcode combinations that occur more
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frequently in web shell scripts than benign code, leveraging statistical analysis and

machine learning algorithms to discern malicious intent. Through techniques such

as n-gram modeling, Markov chains, and hidden Markov models (HMMs), security

practitioners can capture the inherent structure and dynamics of opcode sequences,

discerning recurring motifs and discernible patterns characteristic of web shell be-

havior. Moreover, machine learning algorithms, including recurrent neural networks

(RNNs), long short-term memory (LSTM) networks, and convolutional neural net-

works (CNNs), offer advanced capabilities for learning and recognizing complex op-

code sequence patterns, enabling the development of robust detection models.

In conclusion, opcode sequence analysis represents a sophisticated approach to de-

tecting web shells by leveraging the intrinsic behavioral characteristics encoded within

opcode sequences. Advanced analytical techniques and machine learning algorithms are

used by security professionals to find small problems that point to web shell activity.

This makes web servers safer by lowering the risk of hacking, data breaches, and other

cyber threats.

1.1.7 Yara

Yara, a powerful and versatile pattern-matching tool, has emerged as a corner-

stone in the fields of malware research, threat detection, and incident response. De-

veloped by Victor Alvarez of VirusTotal in 2007, Yara provides security analysts with

a flexible and expressive language for creating custom rules to identify and classify

malicious software based on behavioral patterns, code structures, and other artifacts.

At its core, Yara operates on the principle of signature-based detection, where ana-

lysts define rulesets consisting of strings, byte sequences, and logical conditions that

characterize the unique features and behaviors of specific malware families or threat

actors. These rulesets, written in a human-readable syntax, allow analysts to encapsu-

late their knowledge of malware characteristics and detection techniques into reusable

and extensible patterns, enabling the automated identification of known threats across

diverse environments and datasets.

One of the key strengths of Yara lies in its support for advanced pattern-matching

capabilities, including regular expressions, wildcards, and Boolean operators, which

empower analysts to craft precise and granular detection rules tailored to the nu-

ances of targeted malware variants. By leveraging these expressive features, security

practitioners can construct rules that encompass not only code signatures but also be-
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havioral indicators, such as API call sequences, file system interactions, and network

traffic patterns, thereby enhancing the resilience and efficacy of their detection strate-

gies against polymorphic and obfuscated malware specimens. Furthermore, Yara’s

extensible architecture and integration capabilities enable seamless collaboration and

interoperability with other security tools and platforms, facilitating the sharing of

detection rules, threat intelligence, and analysis findings within the cybersecurity

community.

Yara’s versatile pattern-matching capabilities and flexible rule syntax empower

security analysts to develop custom detection rulesets tailored to the distinct char-

acteristics and behaviors exhibited by web shell instances. Leveraging Yara, analysts

can define rules that encapsulate unique strings, byte sequences, and behavioral pat-

terns associated with known web shell variants, enabling the automated detection of

these malicious artifacts across diverse web server environments and configurations.

One of the primary strengths of Yara in web shell detection lies in its ability to

incorporate both static and dynamic indicators of compromise (IOCs) into detec-

tion rules, thereby enhancing the resilience and accuracy of detection mechanisms

against polymorphic and obfuscated web shell payloads. Yara rules can encompass

not only code signatures and string patterns commonly found in web shell scripts

but also behavioral indicators, such as file system interactions, network traffic pat-

terns, and command execution sequences, which are indicative of malicious activity.

By combining these diverse indicators within a single detection rule, analysts can

construct comprehensive and adaptive detection strategies capable of identifying web

shell instances across different stages of the cyber kill chain, from initial infection

to post-exploitation activities. Furthermore, Yara’s extensible architecture and in-

tegration capabilities enable seamless collaboration and information sharing among

security teams, enabling the rapid dissemination of web shell detection rules, threat

intelligence, and analysis findings within the cybersecurity community.

It’s simple to write and understand Yara rules, and their structure is a lot like the

C language. Each rule in Yara begins with a keyword rule and a rule number come

at the beginning of each rule in Yara. Identifiers must follow the same rules for words

as the C computer language. They can have any letter, number, or underscore, but

the first character can’t be a number. Case matters when it comes to rule names, and

they can’t be longer than 128 characters.

Rules usually have two parts: the string description and the condition. The condi-
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tion section is always needed, but the string description section can be left out if the

rule doesn’t depend on any strings. It is in the string definition area that the strings

that will be used in the rule are set up. Each string has an identifier that is made

up of a $ character followed by a string of letters, numbers, and underscores. These

identifiers can be used in the condition part to find the string that goes with them.

Like in the C programming language, text strings are wrapped in double quotes.

Hex strings are made up of a series of hexadecimal numbers that can appear next to

each other or spaced out. They are surrounded by curly brackets. Hex strings can’t

have decimal numbers in them.

The logic of the rule is in the part called "condition." This part needs to have a

boolean statement that says when a file or process follows the rule and when it doesn’t.

Most of the time, the condition will use the strings’ identifiers to link to strings that

have already been defined. The string number works like a boolean variable in this

case; it returns true if the string was found in the file or process memory and false

otherwise. Below is an example of a Yara rule to detect one of the most used webshell

families today, which is B374k.

r u l e webshell_B374kPHP_B374k {

meta:

d e s c r i p t i o n = "Web␣ She l l ␣−␣ f i l e ␣B374k . php"

author = "Flo r i an ␣Roth"

date = "2014/01/28"

s co r e = 70

hash = "bed7388976f8 f1d90422e8795df f1ea6 "

s t r i n g s :

$ s0 = "Http: // code . goog l e . com/p/b374k−s h e l l "

fu l lword

$ s1 = "$_=str_rot13 ( ’ tm ’ . ’ vas ’ . ’ yngr ’ ) ; $_=

str_rot13 ( s t r r e v ( ’ rqb ’ . ’ prq ’ . ’_’ . ’ 4 6 r ’ . ’

fno ’ "

$ s3 = "Jayalah ␣ Indones iaku ␣&␣Lyke␣@␣2013"

fu l lword

$ s4 = "B374k␣Vip␣ In␣Beaut i fy ␣ Just ␣For␣ S e l f "

fu l lword

c ond i t i o n :
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1 o f them

}

In conclusion, Yara stands as a versatile and indispensable tool in the arsenal

of cybersecurity professionals for detecting, analyzing, and responding to web shell

threats. Its robust pattern-matching capabilities, flexible rule syntax, and broad ap-

plicability make it a cornerstone technology in safeguarding web server environments

against unauthorized access, data breaches, and other malicious activities perpetrated

through web shells. Through its integration into security workflows and collaboration

platforms, Yara enables security teams to stay ahead of evolving web shell threats, pro-

tect critical web-based assets, and uphold the security and trustworthiness of online

services and applications.

1.2 Webshell Detection Approaches

1.2.1 Source Code Analysis

For webshell detection, analysis of source code and opcode involves examining the

code without executing it, focusing on identifying patterns, structures, and anomalies

indicative of webshell presence. Source code analysis entails scrutinizing the textual

programming statements comprising the webshell and leveraging syntactic, seman-

tic, and statistical features to distinguish between benign and malicious code. This

analysis may involve identifying specific keywords, functions, or patterns commonly

associated with webshells, such as system command executions, file manipulations, or

network communications. Additionally, this analysis techniques extract structural in-

formation from the source code, including control flow graphs, data flow analysis, and

syntax parsing, to identify potential vulnerabilities or suspicious behaviors. Control

flow graphs depict the code’s execution flow, allowing for the detection of branching or

looping structures commonly used in webshells to execute malicious commands. Sim-

ilarly, data flow analysis traces the flow of data within the code, identifying variables

or inputs manipulated by malicious code to perform unauthorized actions.

On the other hand, opcode analysis involves examining the sequence of machine-

level instructions or commands comprising the webshell, offering insights into its

dynamic behaviors and execution flow. This analysis entails disassembling or decom-

piling the binary representation of the webshell to extract opcodes, function calls,
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and control flow structures. By analyzing opcode sequences, researchers can identify

characteristic patterns or signatures indicative of webshell activity, such as system

calls, file operations, or network interactions. Furthermore, opcode analysis enables

the identification of obfuscated or encrypted code segments within the webshell, which

may evade traditional source code analysis techniques. However, opcode analysis may

be more complex and resource-intensive compared to source code analysis, requiring

specialized tools and expertise to interpret and analyze low-level machine instructions

effectively.

Beyond exact signature matching, machine learning and deep learning models can

analyze code syntax and structure to detect statistical anomalies in code segments

that are likely to contain obfuscated webshell logic. In the context of source code

analysis, ML/DL algorithms can extract syntactic, semantic, and structural features

from the code, such as function calls, variable assignments, and control flow structures.

These features serve as inputs to the ML/DL model, which learns to differentiate

between benign and malicious code based on learned patterns. For instance, we can

train supervised learning algorithms such as support vector machines (SVMs) or

neural networks to classify source code snippets as either benign or indicative of

webshell activity. In the case of opcode analysis, ML/DL techniques can be applied

to analyze the sequence of machine-level instructions comprising the webshell. ML/DL

models can learn to recognize patterns in webshell behavior by taking out features like

opcode frequencies, control flow patterns, and function calls from opcode sequences.

It is possible to find webshells more accurately with deep learning architectures like

convolutional neural networks (CNNs) or recurrent neural networks (RNNs). These

can effectively capture complex dependencies and patterns within opcode sequences.

One advantage of ML/DL approaches is their ability to detect previously unseen

or polymorphic webshells that evade traditional signature-based detection methods.

These techniques can learn from large-scale datasets of labeled code samples, en-

abling them to generalize to new and evolving threats. Additionally, we can train

ML/DL models to identify obfuscated or encrypted code segments within source code

or opcode sequences, thereby enhancing detection capabilities in the presence of code

obfuscation techniques.

However, challenges remain in effectively applying ML and DL techniques to anal-

ysis of source code and opcode for webshell detection. These include the need for la-

beled training data, the interpretation of model decisions, and the potential for false
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positives or false negatives. Moreover, the computational complexity and resource re-

quirements of ML/DL models may limit their applicability in certain environments.

In conclusion, the application of ML/DL in source code analysis represents a

promising approach to webshell detection, offering the potential for automated, scal-

able, and accurate detection of malicious code in web environments. Continued re-

search and development in this area are essential to address the challenges and limi-

tations of current techniques, further enhancing the security posture of web systems

against webshell threats.

1.2.2 HTTP Traffics Analysis

HTTP traffics analysis for webshell detection involves scrutinizing the network

communication between clients and web servers to identify patterns, anomalies, or

signatures indicative of webshell activity. HTTP traffic analysis is an important part

of NetIDS [5, 36, 20] and WAFs [26] systems that try to find and stop bad things like

webshell deployments, command and control communications, and attempts to steal

data. This analysis typically involves capturing and inspecting HTTP requests and

responses exchanged between clients and servers, focusing on various attributes such

as request methods, URIs, headers, parameters, payloads, and response codes.

Signature-based detection, which matches predefined patterns or signatures repre-

senting known webshell characteristics against the observed HTTP traffic, is one tech-

nique for detecting webshells through HTTP traffic analysis. These signatures may

include unique strings, keywords, or regular expressions commonly associated with

webshells, such as commonly used webshell file names, function calls, or encoded

payloads. Signature-based detection techniques are effective for identifying known

webshells but may struggle to detect polymorphic or obfuscated variants.

Another technique is anomaly-based detection, which flags deviations from normal

HTTP traffic patterns as potentially malicious. Anomaly detection algorithms ana-

lyze various attributes of HTTP requests and responses, such as request frequency,

size, timing, user-agent strings, and HTTP methods, to identify suspicious behavior

indicative of webshell activity. For example, sudden spikes in requests to non-standard

URIs, abnormal payload sizes, or unusual patterns of HTTP headers may suggest the

presence of a webshell.

Machine learning (ML) and deep learning (DL) techniques have emerged as pow-

erful tools for analyzing HTTP traffic to detect webshells, offering the potential to
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automate the process and improve detection accuracy. These techniques leverage the

rich and complex patterns present in HTTP traffic to discern between benign and

malicious activities, enabling proactive detection and mitigation of webshell threats.

Typically, ML-based techniques train models on labeled datasets of HTTP traffic,

explicitly annotating benign and malicious activities. These models learn to identify

subtle patterns, anomalies, or signatures indicative of webshell activity, enabling them

to classify incoming HTTP requests and responses in real-time. Features extracted

from HTTP traffic, such as request methods, URIs, headers, parameters, payloads,

and response codes, serve as inputs to the ML models, allowing them to learn complex

relationships and make informed decisions about the presence of webshells. We can

apply various ML algorithms, including supervised and unsupervised learning algo-

rithms, to analyze HTTP traffic for webshell detection. While unsupervised learning

models identify anomalies or deviations from normal traffic behavior without explicit

labeling, supervised learning models train on labeled data to classify HTTP traffic as

benign or malicious based on learned patterns.

Deep learning, a subset of ML that utilizes artificial neural networks with multiple

layers, has shown promising results in analyzing HTTP traffic for webshell detection.

Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and their

variants, such as long short-term memory (LSTM) networks and gated recurrent units

(GRUs), are commonly employed for this purpose. These deep learning models are

good at detecting complex and changing webshell behaviors because they can handle

temporal dependencies, sequential patterns, and hierarchical representations found in

HTTP traffic.

One advantage of ML and DL approaches is their ability to adapt and learn from

new data, allowing them to detect previously unseen or polymorphic webshells that

evade traditional signature-based detection methods. Moreover, these techniques can

scale to analyze large volumes of HTTP traffic in real-time, making them suitable

for deployment in high-throughput web environments. There are still problems with

using ML and DL to properly look at HTTP traffic for webshell detection. These

include the need for labeled training data, figuring out what model decisions mean,

dealing with encrypted traffic, the chance of getting false positives or negatives, and

keeping up with new ways for webshells to hide their activity. Additionally, real-

world deployments may limit the extent of HTTP traffic analysis due to privacy

considerations and legal constraints.
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Despite these challenges, ML and DL techniques hold tremendous promise for

enhancing webshell detection capabilities, offering proactive and scalable solutions

for identifying and mitigating webshell threats in cybersecurity contexts. Continued

research and development in this area are essential to further improve detection ac-

curacy, reduce false positives, and address emerging challenges in webshell detection.

1.3 Related Works

Statistics of research related to Webshell Detection from reputable sources 3

show that from those 41 studies, 17 of them (42%) adopted machine learning, 12

studies (29%) used deep learning technology, and 12 studies (29%) proposed other

kinds of solutions.

1.3.1 AI-Powered Source Code Analysis Approaches

Source code analysis methods provide a holistic view of webshell code [39, 99,

60, 77], allowing for the examination of its structure, patterns, and attributes. This

comprehensive analysis enables high-accuracy detection of innovative webshells that

may employ sophisticated obfuscation techniques or novel attack vectors to evade

detection.

The author in [35] proposes a six-layer deep learner model for the detection of multi-

language webshells. To prepare the input for the model, they remove all special char-

acters from source codes and only consider tokens, including alphabetic characters or

unicode strings. Then they use some vectorization methods, Term Frequency-Inverse

Document Frequency (TF-IDF), Hash Vectorization (HashVect), One-Hot encoding

(One Hot) and Doc2Vec to vectorize the source code into vectors that range in size

from 100 to 400. Their experiment results show that the deep learner model could

archive 98.27% of accuracy. However, this approach will encounter two major prob-

lems. Firstly, the model is not efficient with an obfuscated webshell. Secondly, using

too much redundant data in the source code will result in the model requiring a lot

of computational resources.

The authors in [79] introduced two types of ensemble learners tailored for safe-

guarding IoT networks. One is a lightweight ensemble learner based on Random

Forest (RF), designed for devices with moderate computing resources. The other is

3*IEEE Xplore, *ACM Digital Library, *SpringerLink, *Wiley Online Library, *ScienceDirect
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a heavyweight ensemble learner that combines the outputs of six classifiers (includ-

ing five single learning classifiers: K-Nearest Neighbors, Naive Bayes, Decision Trees,

K-Means, and Support Vector Machine, along with a deep learning classifier: Multi-

Layer Perceptron or MLP), ideal for devices with more robust computing capabilities.

Both of these learners are trained using 100-dimensional feature vectors derived from

TF-IDF vectorization of PHP opcode sequences. The model archived the best perfor-

mance of F1-Score at 98.32%.

The authors in [100] propose a method for detecting web shell scripts based on

multiview feature fusion. It presents a multiview feature fusion mechanism that ex-

tracts lexical features (e.g. global variables used), syntactic features (e.g. proportion

of conditional/loop statements), and abstract features (e.g. sensitive function usage)

from PHP scripts to effectively represent web shells. It uses the Fisher score to rank

the importance of extracted features and determines the best set of 16 features for

classification through experiments.The model trains an optimized support vector ma-

chine (SVM) classifier using the selected 16 features to distinguish web shells from

benign scripts. The method achieves 92.18% overall accuracy and 95.26% detection

rate for web shells on a large dataset of 1056 web shells and 1056 benign scripts.

It outperforms well-known tools like VirusTotal, ClamAV, LOKI, CloudWalker, and

other state-of-the-art methods. The authors discuss the advantages of their multiview

feature extraction and selection approach, as well as potential future work to improve

coverage across languages and use deep learning for automatic feature engineering.

The authors in [27] propose a model called FRF-WD for detecting PHP webshells.

The model combines two techniques: first, using the fastText algorithm to train a text

classifier on the sequences of PHP opcodes (bytecode instructions) extracted from

files. Secondly, using a random forest classifier trained on static features like longest

string, entropy, and dangerous function signatures, along with the opcode sequence

predictions from fastText, The PHP opcode sequences were found to be an effective

feature for webshell detection, providing improved performance compared to just

using the static features alone in a random forest model. The fastText model works

well for classifying the variable-length opcode sequences, with 4-grams providing the

best n-gram size. Experimental results on a dataset of 1587 webshells and 6934 benign

PHP files showed that the FRF-WD model achieves 99.23% accuracy, 97.65% recall,

and 97.92% precision in detecting webshells using 10-fold cross-validation.

The authors in [46] introduced an RNN-GRU model designed to identify mali-
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cious webshells. What sets this model apart is its specific focus on capturing asso-

ciations between words within individual lines of source scripts. Consequently, the

model is supplied with vectorized words extracted from each line in webshell sources.

Their experiments revealed that this model surpasses existing detectors designed for

multi-language webshells, including the matrix decomposition learner proposed in

[66]. However, it’s worth noting that the model exhibits slightly lower performance

when dealing with PHP webshells compared to the RF-GBDT and FRF-WD ensem-

ble learners proposed in [22] and [27], respectively.

1.3.2 AI-Powered Network Analysis Approaches

Machine learning (ML) and deep learning (DL) techniques offer significant advan-

tages when applied to network traffic analysis [4] for detecting innovative webshells,

addressing the challenges posed by the evolving landscape of cyber threats and the so-

phistication of modern attacks. One of the primary benefits of ML/DL in this context

is their ability to effectively handle large volumes of network traffic data, encompass-

ing diverse protocols, formats, and behaviors. Moreover, ML/DL techniques offer the

flexibility to adapt and learn from new data in real-time, allowing for continuous

improvement and refinement of detection models as threats evolve. ML/DL-based

network traffic analysis enables the integration of contextual information and meta-

data, such as source IP addresses, geolocation data, and historical traffic patterns,

enriching the detection process and improving the overall efficacy of webshell detec-

tion systems.

The authors in [19] propose three deep learning models: that are Artificial Neu-

ral Network (ANN), Convolutional Neural Network (CNN), and Recurrent Neural

Network (RNN) to detect web attacks. The DATASET CSIC 2010 is preprocessed by

removing missing values, duplicate values, encoding fields, and normalizing (Min-Max

scaling) then fed into the deep learning classifiers to build a prediction model. The

performance evaluation shows that the RNN model provides 94% accuracy and 6%

error rate, outperforming other methods like ANN and CNN. RNN also has higher

precision, recall, positive predictive value (PPV), and negative predictive value (NPV)

compared to other models.

The authors in [91] propose a model that combines a convolutional neural net-

work (CNN) for extracting local features, with a long short-term memory (LSTM)

network for capturing sequence patterns in the traffic content. For each request, a
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character-level feature transformation method convert the URL and post body fields

into a 300-character-based vector. The CNN+LSTM model with character-level fea-

tures achieves high precision, recall, and F1-score in detecting Webshell traffic. It

also shows good generalization ability in discovering unknown Webshell attacks. The

character-level representation allows faster training and detection compared to other

text embedding methods like word2vec.

The authors in [88] introduced a runtime webshell detection system for analyzing

HTTP requests. It employs a Support Vector Machine (SVM) classifier trained on

preprocessed and vectorized HTTP requests, with preprocessing encompassing GET

and POST parameter decoding and SVM categorizing requests as suspicious, attack,

or benign.

The authors in [47] proposed two distinct deep learning models, namely CNN

and RNN-LSTM, to detect various network attacks, including webshell attacks. The

CNN model is constructed based on preprocessed and encoded payloads using a word

embedding technique, while the RNN-LSTM model is built upon the initial sequence

of characters in payloads. Both models outperformed traditional ones like LR, SVM,

and RF. Moreover, RNN-LSTM exhibited a slight improvement over CNN.

The authors in [84] proposed a model named SB-LSTM, consisting of four LSTM

layers with 60 neurons each and a dense layer. They adopted a session-based detection

approach, identifying sessions through statistical analysis and the calculation of time

intervals between log file entries. The SB-LSTM model was fed with 6-length vectors

encoding each session log entry.

1.3.3 Non-AI Approaches

Besides the research applying AI algorithms to improve the ability to detect new

types of webshells, there are still some studies using other approaches [94, 49, 78, 21],

which also have notable points.

The authors in [56] introduced Cubismo as a means to enhance the detection

capabilities of existing malware detection tools. Cubismo employs counterfactual ex-

ecution to explore all possible execution paths, uncovering concealed code within

PHP scripts. The process begins with the normalization of original scripts by remov-

ing extraneous lines, comments, and white spaces. These scripts are then subjected to

counter-factual execution. During this analysis, exceptions, runtime errors, and nested

predicates are disregarded to pinpoint new paths. Recursive deobfuscation is applied
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to tackle multi-layer encryption. Each new explored path and encountered dynamic

construct resulted in the creation of new program files. These new programs undergo

execution within a sandbox environment for potential detection. The resulting pro-

gram files serve as inputs for existing malware detection tools, with the identification

of a webshell contingent on any input file being flagged as malware.

Inherited from Cubismo, PHPMalScan [57] serves as a malware detection tool, en-

compassing webshells. PHPMalScan employs counterfactual execution in a sandbox

and virtual environment to explore every possible code execution path. Sandboxes

may collaborate by sharing the necessary artifacts for their respective executions.

PHP functions are categorized as either safe or potentially malicious. Two metrics,

the maliciousness score (MS) and the potentially malicious functions ratio (PMFR),

are introduced based on the number and intensity of malicious functions. The ma-

liciousness of scripts is determined using thresholds associated with MS and PMFR

values.

A webshell classification tool is proposed by the authors in [81]. The proposed

tool uses similarity analysis to detect derivatives of well-known webshells. Following

the proposed method, PHP scripts need to be decoded first in order to reveal any

deobfuscation layer of code. Second, all user-defined function names and bodies are

extracted by analyzing PHP script tokenization. Third, scripts are fuzzy hashed and

stored within the source files. Finally, similarity matrices of function names, function

bodies, and file hashes are generated in request. Visualization tools such as heatmaps

and dendograms are incorporated and used to discover the similarity among samples.

A search software for ASP webshells is proposed by the authors in [54]. The pro-

posed tool has the ability to recognize several features of ASP webshells and report

suspicious files to the administrator for further examination. Specifically, the tool

recognizes calls to specific ASP components and functions, suspicious statements,

and customized encryption functions. The tool is language-dependent and follows a

semi-automatic approach for the detection of webshells.

A sandbox-based environment is described by the authors in [82] for the static

and dynamic analysis of PHP scripts with the aim of semi-automatically detecting

webshells. In the proposed environment, PHP shells are first deobfuscated and nor-

malized. Deobfuscated scripts are statistically analyzed for specificness. Malicious

scripts are indexed, saved in a database, and safely executed in a sandbox environ-

ment for behavioral and dynamic analysis. Sandbox execution enables reporting calls
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to exploitable functions (i.e.; command and code execution, information disclosure,

and filesystem functions) and where they were called. The proposed environment is

found to be failing in the execution of PHP files incorporating other scripts such as

JavaScript and CSS. Moreover, the deobfuscation process is restricted to eval() and

preg_replace() functions with explicit string arguments, which restricts its detection

ability to specific kinds of webshells

1.4 CNN for Source Code Analysis

Compare to the machine learning models, CNN offer distinctive advantages in

detecting unknown webshells through their powerful feature extraction capabilities

and ability to learn complex patterns in data. Many recent webshell detection studies

have used CNN models to enhance the ability to detect new webshells [83, 68].

• Feature Extraction Capabilities One of the primary strengths of CNNs lies

in their ability to perform automatic feature extraction. Traditional machine learning

models, such as Support Vector Machines (SVMs) or Random Forests, rely heavily

on handcrafted features. Designing these features often requires domain expertise

and may not capture the intricate patterns present in webshells. In contrast, CNNs

can automatically learn and extract hierarchical features from raw input data, such

as sequences of tokens from web source code. This hierarchical feature extraction

enables CNNs to identify subtle and complex patterns that might indicate malicious

behavior, making them more effective in detecting unknown webshells that do not

conform to predefined signatures.

• Spatial Invariance and Local Connectivity CNNs are designed to exploit

spatial hierarchies in data, making them particularly effective for tasks where spatial

relationships are important. While webshells are not images, the local connectivity

and spatial invariance properties of CNNs can be leveraged to analyze code struc-

tures. For instance, malicious code often contains specific sequences of operations,

function calls, or keywords that are indicative of webshell behavior. CNNs can learn

to recognize these sequences regardless of their exact position within the code, al-

lowing for robust detection even if the webshell code is obfuscated or embedded in

different parts of the web application.

• Robustness to Variability Webshells can vary significantly in their im-

plementation, using different programming languages, obfuscation techniques, and

coding styles to evade detection. Traditional models may struggle to generalize across
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such variability due to their reliance on specific features. CNNs, however, are adept

at capturing patterns across varying contexts and representations. By training on

a diverse dataset of webshells and benign code, CNNs can learn invariant features

that distinguish malicious code from benign code, thus providing a higher level of

robustness against the variability inherent in webshell implementations.

• Learning Complex Patterns The depth and complexity of CNN architec-

tures enable them to learn complex and nonlinear patterns in data. This is particularly

important for detecting unknown webshells, which may use sophisticated techniques

to avoid detection. CNNs can model intricate dependencies and interactions within

the code, such as nested functions, conditional statements, and loops, which might

be indicative of malicious intent. Other machine learning models, such as logistic re-

gression or decision trees, might struggle to capture these complex patterns due to

their simpler structure and reliance on linear or piecewise linear decision boundaries.

• Scalability and Efficiency CNNs are highly scalable and can be trained

on large datasets using modern hardware accelerators like GPUs. This scalability

is crucial for practical deployment in real-world scenarios, where web applications

generate vast amounts of code that need to be analyzed for potential webshells. Once

trained, CNNs can perform inference efficiently, making them suitable for real-time

or near-real-time detection systems. This efficiency is a significant advantage over

more computationally intensive models, which might not be feasible for large-scale

deployment.

• Empirical Performance Empirical studies and benchmarks have demon-

strated the superior performance of CNNs in various domains, including malware

detection. Research comparing CNNs to other machine learning models in the con-

text of webshell detection has shown that CNNs consistently achieve higher accuracy,

precision, and recall rates. This superior performance can be attributed to the CNNs’

ability to learn rich representations of code and generalize well to unseen examples.

For instance, experiments have shown that CNNs can accurately detect webshells

embedded in complex and obfuscated code, where traditional models fail.

In summary, CNNs offer several compelling advantages for detecting unknown web-

shells compared to other machine learning models. Their ability to perform automatic

feature extraction, exploit spatial hierarchies, generalize across variability, learn com-

plex patterns, and scale efficiently makes them particularly well-suited for this task.

Therefore, we choose CNN model to use in analyzing web application source code to
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detect new types of webshell.

1.5 DNN for HTTP Traffics Analysis

DNNs are typically composed of multiple fully connected (dense) layers, where

each neuron in one layer is connected to every neuron in the subsequent layer. This

architecture allows DNNs to learn complex representations of the input data. They

excel in scenarios where data does not have a specific structure, therefore it can be

applied to various types of data, including tabular data, time series. Compare to

the others AI models, applying Deep Neural Networks to HTTP traffic analysis for

webshell detection offers several advantages:

1. Ability to Learn Complex Patterns: DNNs excel at learning complex and

non-linear relationships within data. HTTP traffic often contains subtle and in-

tricate patterns indicative of webshell activity, which may be difficult to detect

using traditional methods. DNNs can automatically learn these patterns from the

raw data without requiring extensive feature engineering, making them highly ef-

fective for detecting sophisticated or obfuscated webshells.

2. Generalization to Unknown Threats: DNNs are capable of generalizing from

training data to detect previously unseen or unknown webshell variants. This is

crucial in cybersecurity, where attackers continuously develop new techniques to

evade detection. By training on diverse datasets that include various types of

HTTP requests, DNNs can identify anomalous or suspicious activities that may

indicate a webshell, even if they don’t match known signatures.

3. Handling Large Data: HTTP traffic is often high-dimensional, containing nu-

merous features such as headers, parameters, URLs, and payloads. DNNs are

well-suited for handling this type of data, as they can process large volumes of

information and extract relevant features automatically. This allows for more

accurate and comprehensive analysis of HTTP requests in real-time.

4. Automatically Feature Engineering: Traditional machine learning models

often require significant manual feature engineering to perform well, which can

be time-consuming and prone to error. DNNs, on the other hand, can automati-

cally learn and extract features from raw HTTP traffic data, reducing the need



1.6. DISSERTATION RESEARCH DIRECTION 48

for manual intervention and potentially uncovering patterns that might not be

apparent to human analysts.

5. Integration with Other Detection Methods: DNNs can be integrated with

other detection methods, such as signature-based detection, to create a hybrid

approach that leverages the strengths of multiple techniques. For example, a

DNN could be used to analyze the content and behavior of HTTP traffic, while

traditional methods focus on known signatures, resulting in a more robust and

comprehensive detection system

From the above advantages of DNN, the dissertation focuses on researching, im-

proving the DNN model in analyzing HTTP traffics to detect webshell.

1.6 Dissertation Research Direction

The comprehensive review of existing literature described above identifies current

challenges, trends, and gaps in the field of webshell detection. Therefore, the disser-

tation research direction is to propose the application of deep learning techniques to

enhance webshell detection, focusing on the analysis of various data sources such as

source code, opcode sequences, and HTTP traffic. The research aims to develop novel

models capable of accurately identifying webshells, especially modern webshells. The

model must be capable of real-time detection and integration with IDPS devices,

minimizing impact on the system. However, building a webshell detection model that

simultaneously achieves both the goals of accuracy and real-time detection is not

feasible. The dissertation proposes to build two models following two approaches:

network-based analysis and source code analysis, to take advantage of each approach,

specifically as follows:

• Propose a method of analyzing web application source code to detect webshell.

It combines the advantages of two signature-based and CNN-based approaches

that are able to detect innovative webshells with very high accuracy. Because each

programming language has its own characteristics, within the scope of this study,

we will focus on the two most popular server-side programming languages today:

interpreted PHP and compiled ASP.NET. In addition, the method also proposes

algorithms that represent source files as vector strings, which fully reflect the

characteristics of the webshell and are used as input for deep learning models.
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• Propose a DNNmodel to analyze in-depth HTTP queries into the web application

system to detect queries that indicate webshell on the web application server. The

model is capable of integrating into IDS/IPS systems to automatically add the

suspicious source addresses to the blacklist and block the URI of the webshell on

the web server.

1.7 AI Model Evaluation

Model evaluation is a crucial step in the process of building an ML/DL model, en-

suring that the developed models perform effectively and reliably on unseen data. It

involves assessing the performance of a trained model using various metrics and tech-

niques to understand its strengths, weaknesses, and generalization capabilities. Web-

shell detection is a binary classification problem that involves distinguishing between

two classes of webshell and benign code. For classification models, some commonly

used metrics include: The confusion matrix is a fundamental tool in the evalua-

tion of classification models, including those used in webshell detection. It provides

a tabular representation of the performance of a classification model by summarizing

the counts of true positive (TP), true negative (TN), false positive (FP), and false

negative (FN) predictions. Each row of the matrix corresponds to the actual classes,

while each column corresponds to the predicted classes. In the context of webshell

detection: True Positive (TP): Instances are correctly classified as webshells. True

Negative (TN): Instances correctly classified as benign. False Positive (FP): In-

stances are incorrectly classified as webshells when they are actually benign. Also

known as a Type I error. False Negative (FN): Instances are incorrectly classified

as benign when they are actually webshells. Also known as a Type II error. The con-

fusion matrix provides a concise summary of the model’s performance, allowing for

the calculation of various evaluation metrics, including: Accuracy: The proportion

of correctly classified instances out of the total number of instances.

Accuracy =
TP + TN

TP + FP + FN + TN

Precision: The proportion of true positive predictions out of all positive predic-

tions made by the model. It measures the model’s ability to avoid false alarms.

Precision =
TP

TP + FP
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Recall (Sensitivity): The proportion of true positive predictions out of all actual

positive instances. It measures the model’s ability to capture all positive instances.

Recall =
TP

TP + FN

False Positive Rate (FPR): The proportion of false positive predictions out of

all actual negative instances. FPR is calculated as FP / (TN + FP). It is comple-

mentary to specificity and measures the model’s tendency to generate false alarms.

FPR =
FP

FP + TN

F1-Score: The harmonic mean of precision and recall provides a balanced measure

of a model’s performance.

F1− score =
2TP

2TP + FP + FN

By analyzing the confusion matrix and calculating these evaluation metrics, we

can gain insights into the strengths and weaknesses of the classification model, iden-

tify areas for improvement, and make informed decisions regarding model selection,

hyperparameter tuning, and deployment strategies.

1.8 Webshell Dataset Collection

Datasets play a crucial role in the detection of webshells, providing the founda-

tional resource for training and evaluating detection models, understanding the char-

acteristics and behaviors of web shell malware, and developing effective detection

algorithms and techniques. Webshell datasets encompass a diverse array of samples.

These datasets serve as invaluable assets to gain insights into the tactics, techniques,

and procedures (TTPs) employed by threat actors to infiltrate web servers, evade de-

tection mechanisms, and execute malicious operations, thereby identifying common

patterns and trends and extracting meaningful features for use in detection models.

Firstly, webshell datasets serve as a valuable resource for the development and eval-

uation of signature-based detection mechanisms, which rely on predefined patterns

and heuristics to identify known web shell artifacts. By curating datasets comprising

samples of web shell scripts, encoded payloads, command-and-control (C2) communi-

cations, and other related artifacts, researchers can extract characteristic features and

patterns that distinguish web shell activities from legitimate web server operations.
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Dataset

Last

Update

Time

Number of

Sample

Programming

Language(s)
Noisy

Tennc 2022 About 2.000
PHP, JSP, ASP,

ASPX, PY, etc
Numerous

JohnTroony 2020 119 PHP Few

WebSHArk 1.0 2015 809

PHP, ASP,

ASP.NET, JSP,

CFM, PERL, etc

Few

Cycle183 PHP-

Webshell-Dataset
2020 2.917 PHP Few

MWF Dataset 2023 1.359 PHP Few

Table 1.2: Some widely used datasets

These features serve as the foundation for defining detection rulesets using signature-

based languages such as Yara, enabling the automated identification of web shell

instances based on their unique behavioral signatures and code structures. Moreover,

web shell datasets facilitate the validation and refinement of detection rules through

real-world testing against live web server environments, enabling researchers to assess

the robustness and efficacy of signature-based detection mechanisms in detecting and

mitigating web shell threats.

Other primary functions of webshell datasets are to facilitate the training and

evaluation of machine learning and statistical models for webshell detection. By pro-

viding labeled samples of benign and malicious webshell instances, datasets enable

researchers to train ML/DL algorithms to discriminate between legitimate web server

activities and malicious behaviors indicative of web shell presence. Moreover, datasets

allow for the evaluation of detection models against a diverse range of web shell vari-

ants, ensuring their generalizability and effectiveness across different environments

and threat landscapes. Additionally, webshell datasets enable researchers to assess

the performance of detection algorithms in terms of key metrics such as accuracy,

precision, recall, and false positive rate, providing insights into the strengths and

limitations of various detection approaches and guiding the refinement of detection

strategies.

Some previous datasets are available for malicious webshell research. Table 2 lists
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some widely used previous datasets. Developed in 2013, Tennc [67] is a pioneering

dataset of malicious webshells. The most significant aspect of this dataset is its con-

tinuous updates and current growth, made possible by the backing of an open-source

webshell project. However, because it is challenging to control the quality of the sam-

ples uploaded by contributors from around the world, this dataset contains a large

number of noisy samples, including mixed benign and duplicate webshell samples. A

tiny dataset called JohnTroony [40] was produced in 2014 and at first included 132

malicious webshells. A few additional webshells have been added, duplicate samples

have been eliminated, and sample names have been sharpened in the most recent

updates to the dataset. Right now, the dataset has 119 malicious webshell examples

and is of good quality. Another early malicious webshell dataset was released in 2015,

called WebSHArk 1.0 [41]. Rare, noisy samples can be found in this collection. But

WebSHArk 1.0 is no longer relevant. Studies on harmful webshells focus on the use of

recently discovered samples. Cyclel83 PHP-Webshell-Dataset [23] is a sizable and re-

cently released dataset. The Tennc and JohnTroony PHP webshell datasets are among

the twelve prior datasets from which the malicious samples in this dataset were care-

fully chosen. The authors in [95] introduce a malicious webshell family dataset called

MWF. It contains 1,359 PHP malicious webshell samples, grouped into 78 families

and 22 outliers. Each sample has metadata about the dynamic function calls captured

when executing the webshell in a sandbox. It also provides explicit family labels to

enable multi-classification.

The common weakness of these datasets is that they only include popular webshells

and do not include new webshells that use obfuscation techniques, particularly those

used in APT attacks. Therefore, there is a need for a richer data set to build a model

to effectively detect new types of webshells. To solve this problem, we proactively

built a webshell dataset collected from many reliable sources to serve as research.

There are two main data sources used to build the dataset:

• Collecting a wide range of webshells from reliable and most-starred sources on

Github. However, testing shows that there are still benign files mixed in the webshell

dataset, which leads to the noisy-dataset problem. Therefore, these files need to be

removed because the model training process will be noisy and inaccurate if there

are clean files in the webshell dataset. This data set cleaning process is carried out

with support from cybersecurity experts and research institutes to ensure the highest

quality.
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• The second source of data is collected from my actual work. Although the

number is small, it is extremely important because these are mostly results collected

from APT attacks. These samples are all unknown webshells equipped with many

complex evasion techniques. Analyzing these samples allows for further understanding

of tactics, techniques, and evade mechanisms in practice, thereby improving models

to detect new types of webshells more effectively and accurately.

1.9 Summary of Chapter 1

In chapter 1, we presented a general overview of webshells, webshell detection

techniques, and related research. So, the study looks at the pros and cons of the

current methods for finding webshells, as well as the difficulties and emerging trends

in using ML/DL models to make finding new types of webshells more effective. The

clearly defined research goal of the dissertation is to build a solution based on source

code analysis methods and a solution based on network analysis methods that allow

comprehensive detection of webshell attacks. These solutions will combine the ad-

vantages of pattern matching-based detection techniques with machine learning and

deep learning models to enhance the ability to detect new webshell attacks.

In the following chapters, the study presents research results, evaluates them, and

proposes solutions based on deep learning to solve the webshell detection problem

based on two approaches: source code analysis and network-based analysis.



Chapter 2

DL-POWERED WEBSHELL

DETECTION BY SOURCE

CODE ANALYSIS

In this chapter we will focus on analyzing web application source code approach

to detect attacks webshell. Due to the limitations of the traditional technique relies

on predefined signatures and patterns which can limit its effectiveness in detecting

new or obfuscated webshells that do not match known patterns. The dissertation

states the problem and clearly defined the goals that need to be completed. Then we

will propose an framework for detecting webshell attacks based on the source code

analysis approach. Pattern matching detection methods and a deep learning model

will be used together in the framework to make it better at finding unknown webshell

types. Based on the framework, the dissertation will build and experiment with two

complete systems to detect webshells written in PHP and ASP.NET, which are the

two most popular server-side languages today.

2.1 Problem Statement

Traditional detection techniques often rely on signature-based approaches, which

involve matching known patterns or signatures of known webshells. As a result, it

tends to very quickly and accurately distinguish between benign and malicious code

based on specific signatures. However, this approach only detects previously identified

webshells and may fail to detect new or modified variants that deviate from known

54
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signatures. As a result, these methods are vulnerable to evasion by attackers who

continuously modify or obfuscate webshell code to avoid detection. High false-positive

rates, which mistakenly flag benign code or legitimate activities as malicious, may

plague signature-based approaches. This can lead to alert fatigue and unnecessary

investigation efforts, reducing the efficiency and effectiveness of the detection system.

Below is a list of notable studies that utilized traditional techniques.

GuruWS, introduced by the authors in [44], is a hybrid platform designed to detect

malicious webshells and vulnerabilities within web applications. It operates with two

distinct modules: grMalwrScanner for webshell detection and grVulnScanner for iden-

tifying web application vulnerabilities. The grMalwrScanner module employs taint

analysis for simple PHP scripts to identify risky function calls and their associated

arguments. For more complex scripts, it relies on Yara rules to match malicious scripts.

Additionally, a statistical-based analysis that ranks files based on five statistical fea-

tures is optionally provided for users.

The authors in [76] propose two detection algorithms for detecting PHP variable

webshells based on information entropy. Firstly, the PHP Special String Information

Entropy Detection Algorithm selects special characters like function names, variables,

etc. in PHP files as test objects, then calculates the information entropy of these

special strings in normal benign files to get a threshold. If the entropy is higher

than the threshold, it flags the file as potentially containing a variable WebShell.

Secondly, Quotes Information Entropy Detection Algorithm designed to detect non-

ASCII and digital variable WebShells. It calculates the information entropy of quotes

(like single/double quotes) in normal files to get a threshold. If the entropy of the

quotes in a file is higher than the threshold, it indicates that the file may contain a non-

ASCII or digital variable in WebShell. The tests showed that both algorithms were

better at finding variable WebShells than traditional methods based on characteristic

value matching. They did this with high accuracy and low false positive rates.

The authors of [71] also came up with a way to use thresholds. Their method uses

a database that has malicious functions and signatures that are common in webshells,

along with the danger scores (high, medium, and low) that go with them. All files

on the web server undergo scanning, with a focus on matching malicious functions

and signatures from the database. Additionally, the method determines the length of

the longest word within header tags for each file and tallies blacklisted keywords in

comment lines. An optimal threshold value for each feature is determined through the
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examination of a set of benign files. Files exceeding the established threshold values

for the number of malicious functions, malicious signatures, or string word length are

flagged as suspicious and reported to administrators for further scrutiny. Files that

don’t match their original counterparts are also considered suspicious.

Due to the shortcomings of traditional detection methods, researchers began to look

for detection solutions from a new perspective. Applying ML/DL techniques to source

code analysis to detect improved webshells brings many benefits. One of the primary

benefits lies in the ability of ML and DL models to automatically learn and adapt

to complex patterns and features present in source code, enabling the detection of

novel and polymorphic webshell variants that may evade traditional signature-based

methods. By leveraging sophisticated algorithms and architectures such as convolu-

tional neural networks (CNNs) and recurrent neural networks (RNNs), ML and DL

models can capture complex relationships and dependencies within source code, ef-

fectively distinguishing between benign and malicious instances with high accuracy

and precision. However, the detection speed will not be as fast as the signature-based

technique, which requires computational resources to perform.

The authors in [80] propose a method for detecting webshells based on a multi-

classifier ensemble model using machine learning techniques. TF-IDF vectorization

is applied to the features that are extracted from PHP files, including static char-

acters, grammar tokens, and opcode sequences. Several base classifiers, like random

forest, AdaBoost, Gradient Boosting are trained on the feature vectors. An improved

classifier based on RF-AdaBoost is proposed that combines random forest and Ad-

aBoost to enhance performance. Then a dynamic ensemble model is proposed using

stacking that selects the top performing base classifiers for each feature and combines

their predictions using a meta-model. Their experiments on a dataset collected from

GitHub showed the proposed method achieved 98.447% accuracy and 99.227% pre-

cision. Although, the method can detect unknown webshells without needing source

code, it overcomes the limitations of traditional detection approaches that rely heavily

on rules and signatures.

The authors in [7] proposed an ensemble learning model consisting of Logistic Re-

gression, Support Vector Machine, Multi-layer Perceptron and Random Forest classi-

fiers to detect webshell files. It uses a weighted voting method to determine the final

classification, where the weights are based on the accuracy of each base classifier.

These base classifiers were trained and tested on TF-IDF vectorization of opcodes em-
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ploying a well-defined feature selection algorithm. A feature selection method based

on information entropy and Gini coefficient to construct an optimal feature subset

that can detect both encrypted and unencrypted WebShell files. The experiments

show that WS-LSMR achieves 99.14% recall rate and 94.28% accuracy, outperform-

ing traditional single classifiers on both encrypted and unencrypted samples.

The authors in [8] propose a deep super learner approach for detecting mali-

cious WebShell files in PHP web applications. The deep super learner is an ensemble

that combines logistic regression, multilayer perceptron, and random forest as base

classifiers, with weights optimized using a cross-entropy loss function. It combines

static features (string length variance, index of coincidence, information entropy, file

compression ratio, eigencode matching) and dynamic features (opcode sequences) to

construct a comprehensive feature set for WebShell detection. It uses Word2Vec for

feature vectorization, a genetic algorithm for feature selection to reduce feature di-

mensionality, and SMOTE algorithm to oversample the malicious class to handle the

data imbalance issue. Experimental results on a dataset of 571 WebShell samples and

5,379 benign PHP files show the proposed method achieves an accuracy of 98.90% in

detecting WebShell attacks. The authors in [97] presented a two-step deep learning

detection model. Initially, an SRNN with an attention mechanism was used to reduce

input sizes. Subsequently, a 4-dimensional capsule neural network (CapsNet) made

predictions using fused vectors generated from vectorizing both source and opcodes.

The authors in [58] propose a novel approach for detecting JSP webshells using

a machine learning model that combines BERT for word vector extraction from the

bytecode of JSP files and XGBoost for classification. The BERT model is applied to

extract word vectors from the bytecode, which is proposed for the first time for JSP

webshell detection. The BERT-based word embeddings are shown to outperform the

traditional Word2Vec embeddings. The XGBoost algorithm is used as the classifier

to detect whether the word vectors belong to a benign JSP file or a webshell. Experi-

ments on a dataset of 2,903 JSP samples (2,073 benign and 830 webshells) show that

the proposed BERT+XGBoost model achieves 99.14% accuracy, 98.68% precision,

98.03% recall, and 98.35% F1-score.

Typical research works in analyzing application source code to detect webshells

have shown that traditional methods and methods using ML/DL both have differ-

ent advantages and disadvantages, but currently there are not many studies using a

combined approach to take advantage of the advantages of these two methods. The
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authors in [96] propose The Webshell Detector (WSLD) which is a prototype system

engineered for the real-time detection and prevention of webshell attacks. It employs a

trio of heuristic methods, including fuzzy hash similarity, signature matching, statisti-

cal feature-based similarity, and deep learning. These methods rely on a synchronized

webshell feature library. Input scripts are first classified into high-risk and suspicious

categories using these three heuristic models. If an input script is detected as a web-

shell by any of these models, it is classified as high-risk; otherwise, it falls under the

suspicious category. For the latter, a secondary round of detection using Long Short-

Term Memory (LSTM) is conducted, focusing on extracting all system call sequences.

Isolated webshells undergo preprocessing by a cloud analysis module to update the

feature library. The authors use a dataset with 1050 malicious samples taken from

a 638-star project on GitHub, and a total of 1050 normal samples were randomly

selected from an open-source CMS. In experiments, the accuracy of WSLD can reach

98.86%, although this is a relatively good result compared to other single approaches,

it is still not really high enough to be applicable in practice.

However, this is really a promising approach. Inspired by the above research re-

sults, the dissertation determines the research direction that will focus on proposing

an architecture that combines signature-based detection techniques with detection

techniques based on AI algorithms. The architecture will allow very fast detection of

known webshells and the ability to accurately detect innovation-unknown webshells.

And in this chapter, the study selects the two most popular server-side programming

languages today, PHP and ASP.NET, to prove the correctness and feasibility of the

architecture.

Three specific goals are as follows:

• Proposing an DL-Powered Source Code Analysis Framework, namely ASAF, that

mainly combines two techniques, signature-based and ML/DL algorithms, to al-

low fast and accurate detection of webshell types, including known and unknown

types. The framework will be the orientation for building each specific model

applicable to each different type of programming language.

• Proposing a complete interpreted language PHP webshell detection model built

from ASAF. This model includes an algorithm that converts a PHP source file

into a flat vector containing all the webshell features. The model also includes an

ML/DL model with parameters tuned to best suit the PHP webshell detection

problem, to ensure effective detection without requiring too much computational
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resources. Evaluating the effectiveness of the proposed model based on measure-

ment criteria and comparing it to relevant studies.

• Proposing a complete compiled-language ASP.NET webshell detection model

built from ASAF. This model includes an algorithm that converts an ASP.NET

source file into a flat vector containing all the webshell features. The model also

includes an ML/DL model with parameters tuned to best suit the ASP.NET web-

shell detection problem to ensure effective detection without requiring too much

computational resources. Evaluating the effectiveness of the proposed model

based on measurement criteria and comparing it to relevant studies.

2.2 Proposed DL-Powered Source Code Analysis

Framework

As analyzed above, the increasing sophistication and prevalence of webshells lead

to the need for a common source code analysis framework that can be applied to

many different programming languages and is capable of fast detection with a low

false positive rate for known webshell types. At the same time, it is the ability to

detect with high accuracy new types of webshells. Based on previous research re-

sults, this study proposes an DL-powered Source Code Analysis Framework, namely

ASAF, that combines Yara rules for known webshell detection with a Convolutional

Neural Network (CNN) model for detecting new, sophisticated webshell variants. By

leveraging the strengths of both signature-based and deep learning-based methods,

this framework aims to provide comprehensive and effective webshell detection. The

structure of the framework include five modules/components that are linked together

as shown in the Figure 2.1.

• Yara Module: The architecture of the Yara module in ASAF revolves around

the Yara system. The main function of this system is to detect known webshells

based on predefined patterns. Yara is made up of two components: the pattern-

matching mechanism and the Yara-rules database.

The pattern-matching mechanism is based on a combination of textual and binary

pattern matching, allowing for the precise identification of specific sequences of

characters or bytes within a file. At its core, Yara uses string matching, which can

include plain text strings, hexadecimal patterns, and even wildcards for variable
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Figure 2.1: Correlational links between ASAF components

sections within strings. Additionally, Yara supports regular expressions, enabling

complex pattern matching for strings that follow specific formats or structures.

The tool also incorporates conditions and Boolean logic, allowing rules to spec-

ify that a file should be flagged if it contains multiple patterns in combination

or certain patterns but not others. Furthermore, Yara can define where in the

file the patterns should be found using offsets and ranges, ensuring patterns are

matched at specific locations within the file. Modules extend Yara’s functional-

ity, such as the PE module for parsing Portable Executable files, and metadata

provides additional context or information about the pattern being matched. By

combining these features, Yara’s pattern matching mechanism offers a flexible

and powerful approach to defining and detecting known webshells, making it an

effective tool for source code analysis. How the pattern matching technique works

is described in Algorithm 2.1.

The Yara-Rules database consists of a comprehensive collection of meticulously

crafted rules that define specific patterns, signatures, and characteristics asso-

ciated with known threats. These rules leverage a combination of textual and

binary pattern matching, utilizing plain text strings, hexadecimal patterns, wild-

cards, and regular expressions to capture the diverse forms of webshells. The

database is continually updated with new rules as new threats are identified au-

tomatically from the shared Indicators of Compromise (IOC) database or man-

ually by security experts. By maintaining an up-to-date Yara rules database,

the framework ensures a reliable first line of defense against known webshells,
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Algorithm 2.1 Pattern-Matching Mechanism
Input: W - list of web application source files; R - list of Yara-Rules Database

Output: ω - list of webshell

1: ω ← ∅

2: for f ∈ W do

3: for r ∈ R do

4: if RuleMatch(r, f) = true then ▷ if file f match with rule r

5: ω.append(f) ▷ append f as webshell to ω

6: end if

7: end for

8: end for

9: return ω

allowing for efficient and accurate analysis of web source code.

Figure 2.2 shows the architecture of the Yara module in ASAF. To detect the

webshell, the source code files will be scanned by the Yara system. The system

applies all the rules in the database to the web source code to identify matches.

All the files that match the patterns of the Yara rules are marked as potential

webshells. The others are classified as benign.

• Opcode Vectorization Module: The purpose of the module within the web-

shell detection framework is to enhance the accuracy and depth of source code

analysis by converting web source code into its corresponding opcode sequences.

This lower-level representation of the code exposes the fundamental operations

performed by the code, which can reveal hidden malicious patterns that may not

be apparent through higher-level code analysis. By translating the source code

into opcode sequences in the form of vectors, the framework can apply ML/DL

models to detect advanced evasion and obfuscated webshells [53]. The module is

made up of two main components: Opcode Generation and Opcode Vectorization

as shown in Figure 2.3.

The Opcode Generation is responsible for translating source code into a sequence

of opcodes, which are low-level representations of the instructions executed by the

CPU. The web source code is first parsed to generate an Abstract Syntax Tree

(AST) or Intermediate Representation (IR). This parsing step helps in break-

ing down the code into its basic components. Using the AST/IR, the code is
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Figure 2.2: Yara Architecture

then translated into opcodes. This step involves mapping high-level code con-

structs to their corresponding low-level operations. There are tools and libraries

that provide the means to generate opcodes from source code across various pro-

gramming languages. Each of these tools offers unique capabilities tailored to

the specific requirements and nuances of the respective programming languages,

thereby enabling comprehensive and effective opcode analysis, such as:

– PHP: VLD (Vulcan Logic Disassembler)

– .NET (C#): ILDasm, Mono.Cecil

– Python: dis module

– JavaScript: Esprima or Acorn (with custom scripts)

– Java: javap

– Ruby: RubyVM::InstructionSequence

The Opcode Vectorization is responsible for converting the sequence of opcodes

into a numerical format that can be used as input for machine learning models.
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Figure 2.3: Opcode Vectorization Module

This step is crucial for leveraging the power of Convolutional Neural Networks

(CNNs) and other models to analyze opcode sequences. The sequence of opcodes

is tokenized into individual numerical vectors. Common encoding techniques in-

clude one-hot encoding, frequency encoding, and more advanced methods like

Word2Vec or embeddings specifically trained on opcode sequences. To ensure

uniform input size for the CNN, the sequences are padded or truncated to a

fixed length. In ASAF, we propose the Opcode Index Vectorization Algorithm,

or OIVA for short, to represent the sequence in which the opcodes are called in

vector form. The opcode sequence vectors can fully represent the features of a

web application source code, including data that can be considered characteristic

of webshell, allowing CNN models to take advantage of their greatest advantage,

the ability to automatically learn featured.

The algorithm is stated as follows: assuming the programming language (L) has

(n) opcode functions, let (p) be the set containing opcode functions (I).

p = I1, I2, ...In (2.1)

Therefore, the Opcodei can be defined as a vector OCIi that is a set of index o of



2.2. PROPOSED DL-POWERED SOURCE CODE ANALYSIS FRAMEWORK 64

the instructions in p, where m is the number of called instructions.

OCIi = oi1, oi2, ...oim (2.2)

Since the ni of each OCIi is different, the lengths of these vectors need to be

identical. Let max_length is the maximum of (n1, n2, ...), then we padding all the

OCIi to the same max_length length by value 0. With this representation, the

OCI vectors will be able to represent most properties of the source code. The

Algorithm 2.2 illustrates our strategy to compute an OCI vector as output, from

the opcode file in text format as input.

Algorithm 2.2 OIVA
Input: f - Opcode file; IS - List of opcode

Output: OCI vector

1: OCI ← ∅

2: for line ∈ f do

3: for i ∈ IS do

4: if i ∈ line then

5: OCI.append(index) ▷ index of i in IS

6: end if

7: end for

8: end for

9: OCI.padding(max_length, 0)

10: return OCI

• Dataset Collecting and Cleaning

In the ASAF, the dataset plays a critical role in training, validating, and testing

the Convolutional Neural Network (CNN) model. The quality, diversity, and size

of the dataset directly influence the effectiveness and accuracy of the webshell

detection system. The dataset should include both benign and malicious web ap-

plication source files to train the CNN effectively. For collecting benign datasets,

the data source is relatively abundant and easy to access. There are some meth-

ods to gather source files from the internet, such as Open-Source Repositories

(GitHub, GitLab, Bitbucket, ...) or Open-Source Frameworks and CMS, ... The

collected benign source files will be added to the intermediate dataset, ready
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for preprocessing. For webshell datasets, the number of files will be more lim-

ited, especially for new webshell types. Therefore, collecting a webshell dataset

requires gathering data from many different sources. Public Malware Reposito-

ries (VirusTotal, MalShare, TheZoo, Hybrid Analysis, ...) are popular services

that aggregate malware samples. We can search for webshells by using relevant

keywords. Honeypots are a proactive way to capture webshells in the wild. Hon-

eypots are decoy systems designed to attract attackers, allowing you to collect

and analyze their payloads. Collaborating with incident response teams can pro-

vide access to webshell samples discovered during security incidents. We can also

access webshell data sources through security forums and open-source reposito-

ries, such as: Exploit Database, Hack Forums, GitHub Repositories, etc. Finally,

personal and professional networks provide access to new types of webshells that

are not yet widely shared.

Figure 2.4: Dataset Collecting and Cleaning

Before the webshell collection is added to the dataset, each file needs to go

through the webshell confirmation process, which includes two stages. At the

first stage, files that match Yara rules are added to the preprocessed dataset.

Those that do not match are flagged for manual review by cybersecurity experts

at the second stage. In the event that the file is confirmed to be a webshell, it is
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added to the dataset, and new Yara rules are updated in the database to detect

this type of webshell. After collecting the webshell and benign datasets from

multiple sources, the collected dataset needs to go through preprocessing and

cleaning. Preprocessing the collected data to remove duplicates and irrelevant

files. The final result is a high-quality, cleaned dataset, as shown in Fig. 2.4.

• CNN Model Architecture

Figure 2.5: CNN Model

In an ASAF, CNN model architectural design plays an important role. The ar-

chitecture of a proposed CNN model is composed of layers, relationships between

layers, and also hyperparameters whose value is set before the learning process

begins. Usually, for each specific problem, there will be certain architectures that

show outstanding advantages. However, it needs to go through a process called

hyperparameter tuning to achieve the best efficiency, performance, and speed.

Hyperparameter tuning consumes quite a lot of time and resources, so not all

hyperparameters will be refined when we know they are optimal for the problem.

Therefore, at this step, we draft the CNN model architecture using the same

structure and optimal hyperparameters as shown in Fig. 2.5. The other hyper-

parameters will be selected after we make the tun at the next step. The draft

architecture of the CNN model is composed of five layers.

1. The network starts with an input layer, which takes the vectorized opcode

sequences. This layer simply feeds the data into the network without any

transformations.
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2. Following the input layer are a series of convolutional layers. The model

uses three parallel one-dimensional convolutional layers, each with different

kernel sizes, that slide over the input data, performing convolutional oper-

ations to capture features of varying lengths from the input sequences. All

these convolution layers will then be merged into a concatenate unified convo-

lution layer to combine the features extracted by different kernels, providing

a richer representation of the input data. The nonlinear activation function

ReLU f(x) = max(0,x) where x is the input value to create abstract infor-

mation at a higher level for the following layer. By providing a huge amount

of training data, we can expect the neural network to learn specific patterns

of the malware family as well as powerful invariant features over time to

distinguish the malware from benign files.

3. The third layer is the pooling layer which reduces the number of parameters

that we need to calculate, thereby reducing computation time. The proposed

model uses the global_max_pooling layer. The main purpose of this layer

is to reduce the dimension of the previous layer, remove features that are

no longer needed, and preserve the features that are sufficient to classify the

object.

4. The fourth layer is fully connected layers. After several convolutional

and pooling layers, the output is flattened and passed through one or more

fully connected layers. These layers function similarly to traditional neural

networks, where each neuron is connected to every neuron in the previous

layer. Fully connected layers integrate the high-level features learned by the

convolutional layers and map them to the final output.

5. The last layer is the classification layer that converts the feature matrix

in the previous layer into a vector containing the probabilities of the source

files with the following parameters:

– Softmax activation function: In the classification problem, the output

needs to predict which class the input data belongs to; the result of 100%

is divided equally among all classes; the class with the greatest probability

is the output. Another problem encountered is that signals from the neural

network layers can have negative values. So the requirement is to find

a function that returns a positive probability of what class the signal

belongs to, and the sum of the probabilities equals 100%. The Softmax



2.2. PROPOSED DL-POWERED SOURCE CODE ANALYSIS FRAMEWORK 68

activation function solves this problem and is often used at the last layers

of the classification network to evaluate the classification probability of

the input data. The formula for the Softmax function is as follows:

Softmax
(
X
)
ij

=
exp

(
Xij

)∑C
k exp

(
Xij

)
– Loss function cross-entropy: Calculates the difference between the prob-

ability distributions of the prediction and the actual distribution of each

class. The model predicts a probability distribution (p, 1 − p) for each

class and compares it with the real distribution (y, 1 − y) of each class.

In the webshell detection problem, cross-entropy is used to compare the

distance between softmax outputs and the probability that the file is be-

nign or webshell in one-hot encoding. One-hot encoding is the process of

converting each value into binary features containing only the value 1 or

0, or, in other words, one-hot encoded labels tell us what kind of source

file it is with 100% certainty. The lower the cross-entropy, the more ac-

curate the prediction results. If the prediction is perfect, its value will be

0. As such, the cross-entropy is used as a loss function to help a neural

network evaluate the probability (the certainty) of predicting a data sam-

ple corresponding to a class. The cross-entropy function is defined by the

following formula:

− (ylog ((p) + (1− y) log (1− p)))

– Optimizers: for the purpose of smoothing the steps of the descending

gradient so that it can converge faster, the model using the Adaptive

Moment Estimation (adam) algorithm is common in CNN architectures;

The parameters set for this optimizer include learning_rate = 0.05; β1 =

0.9; β2 = 0.999 and ε = 10−8.

• Hyperparameter Tuning

The CNN model architecture above is just a basic architectural framework de-

signed to best suit the webshell detection problem; however, the programming

language has a great influence on the characteristics of each type of webshell.

Therefore, it is essential to perform hyperparameter tuning to build a CNN model

for each type of webshell written in different programming languages.
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Hyperparameter tuning is a critical process in optimizing Convolutional Neural

Network (CNN) models to achieve the best possible performance. Hyperparame-

ters are configuration settings used to control the learning process of the model,

and they are not learned from the data. Key hyperparameters for CNNs include

the number of layers, the number of filters in each convolutional layer, filter sizes,

stride, padding, activation functions, dropout rates, batch size, learning rate, and

the number of epochs for training. Tuning these parameters involves systemati-

cally experimenting with different values to find the optimal configuration that

minimizes the loss function and enhances the model’s accuracy. Common tech-

niques for hyperparameter tuning include grid search, random search, and more

advanced methods like Bayesian optimization and genetic algorithms. Grid search

exhaustively searches through a manually specified subset of the hyperparameter

space, while random search samples hyperparameters from a specified distribu-

tion. Bayesian optimization builds a probabilistic model of the objective function

and uses it to select the most promising hyperparameters to evaluate next. Proper

hyperparameter tuning can significantly impact the CNN’s ability to generalize

from the training data to unseen data, thereby improving its effectiveness in tasks

such as detecting unknown webshells. This process is often computationally in-

tensive, requiring robust infrastructure and efficient use of resources to balance

exploration of the hyperparameter space with the computational cost.

The problem is stated as follows : let f : χ→ R be the objective function needed

to optimize, where χ is the set of hyperparameters we want to search over. There

are many techniques for selecting a set of hyperparameter values for optimiza-

tion, from simple ones like Grid Search, Random Search to complex ones such as

Evolutionary Optimization or Bayesian Optimization. We use k -fold cross vali-

dation to calculate the score for a given set of hyperparameter values and MSE

(Mean Square Error) as the score function that will be minimized. Since the cost

of computation per k -fold cross validation is expensive, Bayesian Optimization

is suitable for not calculating all values of hyperparameters. The main idea is

to consider model f as a probability distribution, We compute f at parame-

ter x1, x2, ..., xD. Then, f(x1), f(x2), ..., f(xD) are observed variables; any f(x) that

cannot be computed by high cost is considered a hidden variable. Then we use the

Gaussian process to select the probabilistic model P (f(x)|f(x1), f(x2), ...f(xD)) to

compute f(x).
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There are some popular libraries, such as Keras Tuner, Optuna, and Scikit-

Optimize provide robust frameworks for this purpose. Keras Tuner is specifically

designed for optimizing Keras models, offering various search algorithms like

Random Search, Hyperband, and Bayesian Optimization to explore the hyper-

parameter space. Users define a HyperModel or use a prebuilt one, then set up a

tuner to execute the search. Optuna is another powerful library that employs an

adaptive approach, using efficient sampling and pruning strategies to optimize

hyperparameters. It integrates seamlessly with many machine learning frame-

works and allows users to define an objective function that Optuna optimizes.

Scikit-Optimize (or skopt) provides simple yet flexible tools for hyperparameter

optimization, including Bayesian Optimization, which builds a surrogate model

to make intelligent decisions about which hyperparameters to try next. To use

these libraries, users typically define the search space for each hyperparameter,

specify the objective function to minimize, and configure the search strategy.

These libraries help automate the tuning process, significantly enhancing the

performance and efficiency of CNN models by systematically identifying the best

hyperparameter configurations. They also support visualization tools to analyze

the search process and outcomes, making them invaluable for developing high-

performing CNN models in Python.

• ASAF Workflow

The Fig.2.6 illustrates a proposed comprehensive framework for detecting web-

shells by web application source files analysis. The process begins with web ap-

plication source files undergoing a pattern-matching analysis using Yara compo-

nents, which consist of a pattern-matching mechanism and a Yara-rules database.

If a match is found, the file is immediately flagged as a webshell. If no match

is detected, the file is deemed benign and proceeds to the next stage, which in-

volves deeper analysis using opcode generation and vectorization modules. These

modules convert the source code into opcode sequences, providing a low-level rep-

resentation of the code’s behavior.

The opcode sequences are then vectorized and fed into a Convolutional Neural

Network (CNN) for further analysis. The cleaned dataset plays a critical role

in training, validating, and testing the CNN model. The model has also been

finely tuned through hyperparameter tuning, predicting whether the code is a

webshell or benign. If CNN detects a webshell, this prediction is forwarded to
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cybersecurity experts for verification and rule updating, ensuring that new pat-

terns are incorporated into the Yara-rules database. The framework also allows

us to automatically update Yara rules from shared IoC databases. Conversely,

if CNN predicts the code as benign, it is confirmed as safe. This dual-layered

approach, leveraging both Yara rules for known threats and CNN models for

unknown threats, ensures robust and dynamic detection of webshells, enhancing

the security of web applications.

Figure 2.6: ASAF Workflow

In conclusion, the proposed framework leverages the strengths of Yara’s rule-based

detection for known webshells and the adaptive learning capabilities of CNNs for de-

tecting unknown webshells. The framework provides a general guideline, thereby al-

lowing us to build solutions to effectively detect webshell attacks for each type of pro-

gramming language using source code analysis.
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2.3 PHP Webshell Detection

2.3.0.1 Approach Direction

As of the latest data, W3Techs (World Wide Web Technology Surveys) reports

that PHP is used by approximately 78.9% 1 of all the websites. This is a substantial

majority, indicating PHP’s dominance in the server-side language market, making it

a common target for webshells. Traditional detection methods often fall short due

to the evolving nature of webshells, necessitating a more sophisticated approach.

Using ASAF, in this section, the study proposes to build a model to effectively detect

webshells programmed in PHP.

2.3.1 Yara

The Yara-Rules dataset used in this study was collected from many sources and

over a very long period of work in the field of information security. The first is from

GitHub and GitLab, which are platforms that host numerous valuable and updated

Yara-Rule repositories shared by cybersecurity researchers and organizations. The

second is from my professional networks with specialized agencies in the field of

information security, professional associations, research institutes, conferences, and

webinars. This kind of source can provide access to custom-developed Yara rules that

allow for the detection of several new webshells that are not yet widely shared. The

data set contains a total of 699 rules, allowing detection of many popular PHP, JSP,

ASP, ASP.NET, Python webshells today. This set of rules will continue to be updated

regularly to enhance the ability to detect new webshell patterns.

2.3.2 Opcode Vectorization

VLD, short for Vulcan Logic Disassembler, is a powerful PHP extension designed

to disassemble compiled PHP code, providing a detailed representation of its internal

opcode. VLD reveals the underlying operation codes (opcodes) that the PHP engine

generates from the source code during execution. This tool is particularly useful for

developers and security analysts who need to understand the low-level operations of

PHP scripts, optimize performance, or detect anomalies and vulnerabilities such as

1https://w3techs.com/technologies/details/pl-php
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webshells. Security experts can use VLD to analyze obfuscated or malicious PHP

code by examining the opcodes for suspicious operations.

By executing a PHP script using the "-d" flag to generate and view the opcodes,

as follows:

php −d vld . a c t i v e=1 −d vld . execute=0 your_scr ipt . php

Here, "vld.active=1" activates the VLD extension, and "vld.execute=0" prevents

the script from running after disassembly, focusing on opcode generation. The output

will display the opcodes for each line of the PHP script, including detailed information

about each operation performed by the PHP engine.

2.3.3 Dataset Collecting and Cleaning

For the benign dataset, different PHP frameworks, forums and content manage-

ment systems were collected from their official sites. They includes Laravel, Word-

press, Joomla, phpMyAdmin, phpPgAdmin, phpbb 2. After removing non-PHP files,

the benign set contains totally 7,400 files.

To build the webshell dataset, we collected a wide range of webshells from reliable

and most stars sources on Github 3. In addition, some webshell samples we collected

during working were also used. There are totally 4,171 PHP webshell files.

Following ASAF, in the step of reviewing the collected webshell dataset with Yara

and reviewed by experts, we eliminated 27 false positives. After removing irrelevant

and duplicate files, the total number of benign files is 7275 and the total number of

webshell files is 4087.

In order to train and validate our proposed method of detecting PHP webshells,

we divided the benign and webshell datasets into two parts with a ratio of 8:2 as the

rule of thumb [72]. Based on the distribution of files in the dataset sources, the split

of training and testing sets is chosen by the whole source. Thus, the following table

shows our final datasets for training and testing.

2Github: https://github.com/laravel/laravel; https://github.com/WordPress/

WordPress; https://github.com/joomla/joomla-cms; https://github.com/phpmyadmin/

phpmyadmin; https://github.com/phppgadmin/phppgadmin; https://github.com/phpbb/
3/tennc/webshell, /bartblaze/PHP-backdoors, /b374k/b374k, /JohnTroony/php-

webshells, /xl7dev/WebShell, /BlackArch/webshells, /fuzzdb-project/fuzzdb,

/LuciferoO/webshell-collector, /ysrc/webshell-sample, /webshellpub/awsome-webshell,

/PHP-WebShell-Bypass-WAF, /linuxsec/indoxploit-shell

https://github.com/laravel/laravel
https://github.com/WordPress/WordPress
https://github.com/WordPress/WordPress
https://github.com/joomla/joomla-cms
https://github.com/phpmyadmin/phpmyadmin
https://github.com/phpmyadmin/phpmyadmin
https://github.com/phppgadmin/phppgadmin
https://github.com/phpbb/
/tennc/webshell
/bartblaze/PHP-backdoors
/b374k/b374k
/JohnTroony/php-webshells
/JohnTroony/php-webshells
/xl7dev/WebShell
/BlackArch/webshells
/fuzzdb-project/fuzzdb
/LuciferoO/webshell-collector
/ysrc/webshell-sample
/webshellpub/awsome-webshell
/PHP-WebShell-Bypass-WAF
/linuxsec/indoxploit-shell
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Table 2.1: Non-duplicate Benign and Webshell Datasets

Training Set Testing Set

Benign Dataset 5,820 1,455

Webshell Dataset 3,270 817

2.3.4 Hyperparameter Tuning CNN Model

The CNN model for detecting PHP webshells is built on the basis of ASAF’s CNN

model; the detailed parameters of the model are selected through the hyperparameter

tuning process. We choose to use the grid search technique that exhaustively searches

over a manually specified subset of the hyperparameter space. It systematically works

through multiple combinations of parameter values, cross-validating as it goes to

determine which set gives the best performance. The advantages of this technique are

that it is simple, easy to understand, and guarantees finding the optimal combination

within the specified grid. However, it is computationally expensive, especially with a

large number of hyperparameters or values, and may not be feasible for large-scale

problems. There are six hyperparameters that can be tuned, and they take two types

of values: range and choice. Especially for filter size, since the model uses three layers

merged together in a convolution layer, each layer receives a different filter size, so

its value will be a 3-dimensional vector of the form [x, x + 1, x + 2].

Table 2.2: Hyperparameters tuning value

Hyperparameter Value Type Optimal Value

learning rate [0.001, 1.0] range 0.001

dropout rate [0.01, 0.8] range 0.5

batch size [8, 16, 32, 64, 96, 128] choice 96

epoch [8, 16, 32, 64, 96, 128] choice 64

filter size [[2,3,4], [14,15,16]] range [3,4,5]

number of filter [1, 300] range 128

After performing hyperparameters tuning, the optimal CNN values are show in

Table 2.2.
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2.3.5 Experimental Results and Evaluation

2.3.5.1 Implementation Details

Based on the proposed method, we built and implemented our solution, namely

PHP-ASAF, in python language. The experiments were performed in a computer

having 2 x Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz (45MB Cache, 18-cores per

CPU), 128GB for the main memory, CentOS Linux release 7.4.1708, python release

2.7. For the deep learning platform, we use tensorflow v.1.14.0, scikit-learn v.0.20.4,

scipy v.1.2.2, numpy v.1.16.5 and yara-python v.3.10.0.

The experimental part is performed with 3 scenarios along with the test dataset

built in Section 2.3.3.

• S1: Evaluate the PHP webshells detection efficiency of Yara component in PHP-

ASAF.

• S2: Evaluate the PHP webshells detection efficiency of CNN model in PHP-

ASAF.

• S3: Evaluate the PHP webshells detection efficiency of PHP-ASAF.

2.3.5.2 Results and Evaluation

a. Yara Detection

Using the Yara ruleset in Section 2.3.1, we evaluate the ability to detect PHP

webshell types on a test dataset of 1455 benign files and 817 webshell files collected

in 2.3.3. Table 2.3 shows the results we got in the matrix confusion.

Table 2.3: Confusion matrix of PHP webshell detection by using Yara

Real Webshell Real Benign

Predicted Webshell 709 8

Predicted Benign 108 1447

To evaluate the performance of your Yara-based detection system, we can calculate

several key metrics based on the confusion matrix provided:

The prediction results underscore a significant limitation of the current Yara-based

webshell detection system: its reliance on known webshell patterns. While the system
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Table 2.4: Key metrics of of PHP webshell detection by using Yara (%)

Measure Value (%)

Accuracy 94.89

Precision 98.88

Recall 86.76

Specificity 99.45

F1-Score 92.43

False Positive Rate 0.55

False Negative Rate 13.24

demonstrates high accuracy (94.89%), precision (98.88%), recall (86.76%), and speci-

ficity (99.45%) in detecting webshells, these metrics primarily reflect its capability

to identify webshells that match predefined patterns in the Yara rules. This inher-

ent dependence on known signatures means that the system is adept at recognizing

previously identified webshells but falls short when encountering new or obfuscated

variants that do not align with the established rules.

The high precision rate signifies that the system effectively avoids false positives,

ensuring that flagged files are almost always webshells. However, the recall rate, while

commendable, reveals that approximately 13.24% of actual webshells go undetected.

This gap highlights the system’s vulnerability to novel webshells that deviate from

known patterns. Such undetected threats can pose significant security risks, as attack-

ers continually evolve their techniques to bypass signature-based detection methods.

The specificity of 99.45% indicates that benign files are rarely misclassified as

webshells, a crucial attribute for minimizing unnecessary alerts and maintaining op-

erational efficiency. However, this specificity does not compensate for the system’s

inability to adapt to new threat landscapes dynamically. As webshells evolve, so must

the detection methodologies, moving beyond pattern matching to incorporate more

adaptive and heuristic approaches.

In conclusion, while the Yara-based system excels at identifying known webshell

patterns, its effectiveness against unknown or modified webshells remains limited.

To enhance its robustness, the system should integrate advanced machine learning

techniques capable of learning from data and identifying anomalies beyond predefined

patterns.

b. CNN Detection
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Same as the previous experiment, we used also the datasets described in Section

2.3.3 to evaluate the CNN model by using the tensorflow engine. The results illus-

trated by the matrix confusion in Table 2.5 and the key metrics in Table 2.6.

Table 2.5: Confusion matrix of PHP webshell detection by using Yara

Real Webshell Real Benign

Predicted Webshell 807 17

Predicted Benign 10 1438

Table 2.6: Key metrics of of PHP webshell detection by using CNN (%)

Measure Value (%)

Accuracy 98.81

Precision 97.94

Recall 98.78

Specificity 98.83

F1-Score 98.35

False Positive Rate 1.17

False Negative Rate 1.22

The recent evaluation results of the CNN-based detection system highlight its

impressive capability in identifying known webshell patterns. With an accuracy rate of

98.81%, the model demonstrates strong overall performance in distinguishing between

webshells and benign files. The high precision rate of 97.94% indicates that the model

is highly effective in minimizing false positives, ensuring that most of the files flagged

as webshells are indeed malicious. This is crucial in reducing the burden of false alarms

on security analysts, allowing them to focus on genuine threats.

Furthermore, the recall rate of 98.78% reflects the model’s robustness in detecting

almost all actual webshells, showcasing its reliability in capturing known malicious

patterns. The specificity, also at 98.83%, underscores the system’s efficiency in cor-

rectly identifying benign files, thereby minimizing the risk of misclassification and

potential disruption of legitimate activities.

The F1 score of 98.35% balances precision and recall, reinforcing the system’s

effectiveness in handling both false positives and false negatives. The low false positive

rate of 1.17% and false negative rate of 1.22% further validate the model’s accuracy
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and dependability.

c. PHP-ASAF Detection

From the above two experiments, we have shown the advantages and disadvantages

of Yara and CNN techniques in detecting PHP webshells. In this section, we will

continue to experiment with the PHP-ASAF model on the same data set to prove

its effectiveness over the above two techniques in detecting PHP webshell attacks.

Experimental results are shown in the confusion matrix in Table 2.7 and the key

metrics in Table 2.18.

Table 2.7: Confusion matrix of PHP webshell detection by using PHP-ASAF

Real Webshell Real Benign

Predicted Webshell 809 17

Predicted Benign 8 1438

Table 2.8: Key metrics of of PHP webshell detection by using CNN (%)

Measure Value (%)

Accuracy 98.9

Precision 97.94

Recall 99.02

Specificity 98.83

F1-Score 98.48

False Positive Rate 1.17

False Negative Rate 0.98

The integration of Yara’s pattern-matching capabilities with CNN’s deep learning

prowess allows PHP-ASAF to detect both known and unknown webshell patterns

effectively. It can be seen that the detection results of PHP-ASAF are better in all

measures when compared with PHP and CNN detection. Specifically, when looking

at the number of 817 PHP webshell files, CNN has 10 cases of False Negatives (FN),

while PHP-ASAF has 8 FNs. This is because there are 2 PHP webshell files out of

10 FN cases. This has been correctly identified by the Yara module in PHP-ASAF as

a webshell.
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Table 2.9: Comparison of different webshell detection approaches on our dataset (%)

Method Venue Accuracy F1-Score

Simulated Word2Vec+CNN[69] ICNCC, 2017 98.42 97.80

Simulated RF-GBDT[22] DSC, 2018 98.59 98.05

GuruWS[73] TCCI, 2019 85.56 92.00

php-malware-finder[3] NBS, 2022 94.23 96.46

ASAF (our) VCRIS, 2024 98.9 98.48

2.3.5.3 Comparisons

To justify our ASAF’s performance, we compare our results to those of other

approaches. For comparison, we chose two non-AI approaches [3, 73] and two ML/DL

approaches [22, 69]. Due to the limitations of sharing source code, we have simulated

the RF-GBDT and Word2Vec+CNN model as described by the authors, which are

currently one of the best archivements for evaluation on our dataset aforementioned

in Section 2.3.3. The actual results of the simulated RF-GBDT and Word2Vec+CNN

are not as high as announced. The comparison results in Table 2.9 show that the

ASAF model achieves the best results in both accuracy of 98.9% and F1-Score of

98.48% when compared with other methods on our dataset.

2.4 ASP.NET Webshell Detection

2.4.1 Approach Direction

According to W3Techs, ASP.NET is the second most used server-side programming

language in the world after PHP. This means that the number of webshell attacks on

web systems using ASP.NET is also very large. Unlike PHP, which is an interpreted

language, ASP.NET is a compiled language, so the mechanism for creating opcodes

from the source code of the web application is totally different. Building an ASP.NET

webshell attack detection solution based on ASAF, namely ASP.NET-ASAF, will

further demonstrate the ability to deploy a webshell attack detection solution that

supports all server-site programming languages.
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2.4.2 Yara

The yara module in ASP.NET webshell attack detection solution is used in con-

junction with the ruleset in the section 2.3.1. The rule set contains a total of 699

webshell patterns. We will regularly update this set of rules to improve our ability to

detect new webshell.

2.4.3 Opcode Vectorizaion

Firstly, the source code of an ASP.NET application can be represented as MSIL,

which is able to solve the problems related to code obfuscation. Unlike PHP, which

interprets every time a web page is requested, ASP.NET compiles dynamic web pages

into DLL files that the server can execute quickly and efficiently. Then, the DLL files

will continue to be converted to Opcode. There are two commonly used tools: ILDasm

(IL Disassembler) and Mono.Cecil. We choose to use Mono.Cecil, which is a powerful

library for reading, manipulating, and writing .NET assemblies. It allows developers

to inspect and modify the Intermediate Language (IL) code of .NET assemblies. Below

is how to use Mono.Cecil in Python.

us ing Mono . Cec i l ;

us ing Mono . Cec i l . C i l ;

var assembly = AssemblyDef in i t ion . ReadAssembly ("

MyAssembly . d l l ") ;

f o r each ( var module in assembly . Modules )

{

f o r each ( var type in module . Types )

{

f o r each ( var method in type . Methods )

{

i f (method . HasBody)

{

fo r each ( var i n s t r u c t i o n in method . Body .

I n s t r u c t i o n s )

{ Console .

WriteLine ( i n s t r u c t i o n ) ;
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}

}

}

}

}

The code below is a part of the Opcode corresponding to the functions get_Request

in the source code of insomnia_shell.aspx.

[ System .Web] System .Web. HttpRequest

get_Request ( ) c i l managed

{

. custom in s tance void [ mscor l ib ] System . D iagnos t i c s .

DebuggerHiddenAttribute : : . c t o r ( ) = ( 01 00 00 00 )

. maxstack 1

. l o c a l s i n i t ( c l a s s [ System .Web] System .Web. HttpContext

V_0, c l a s s [ System .Web] System .Web. HttpRequest V_1)

IL_0000 : c a l l c l a s s [ System .Web] System .Web.

HttpContext [ System .Web] System .Web. HttpContext : :

get_Current ( )

IL_0005 : s t l o c . 0

IL_0006 : l d l o c . 0

IL_0007 : b r f a l s e . s IL_0012

IL_0009 : l d l o c . 0

IL_000a : c a l l v i r t i n s t anc e c l a s s [ System .Web] System .

Web. HttpRequest [ System .Web] System .Web. HttpContext : :

get_Request ( )

IL_000f : s t l o c . 1

IL_0010 : br . s IL_0016

IL_0012 : l d nu l l

IL_0013 : s t l o c . 1

IL_0014 : br . s IL_0016

IL_0016 : l d l o c . 1

IL_0017 : r e t

}
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Currently, the list of MSIL has 229 instructions for .NET framework 5.0. By apply-

ing the OIVA algorithm, we obtain a set of Opcode vectorizations that fully represent

the feature of ASP.NET webshell.

2.4.4 CNN Model Hyperparameter Tuning

Similar to the Hyperparameter Tuning process to build parameter selection for the

CNN model of PHP-ASAF, we also perform this process to select optimal parameters

for the ASP.NET-ASAF model. There are six hyperparameters that can be tuned,

and they take two types of values: range and choice. The set of hyperparameters with

their range to be tuned and optimal value is shown in Table 2.10.

Table 2.10: Hyperparameters tuning value

Hyperparameter Value Type Optimal Value

learning rate [0.001, 1.0] range 0.001

dropout rate [0.01, 0.8] range 0.5

batch size [8, 16, 32, 64, 96, 128] choice 64

epoch [8, 16, 32, 64, 96, 128] choice 32

filter size [[2,3,4], [14,15,16]] range [4,5,6]

number of filter [1, 300] range 128

2.4.5 Dataset Collecting and Cleaning

To build the dataset, we collect it from popular source code sharing platforms

around the world, such as Github, Gitlab or Sourceforge. Collected source code files

must ensure factors such as trustworthiness, reputable sharers, and good community

appreciation.

For benign source files, the collection is relatively simple because there are quite

a few open source CMS frameworks that use ASP.NET shared by the community;

for example, DotNetNuke, Umbraco, Kentico, Sitefinity CMS, N2 CMS, and Orchard

CMS. Obviously, collecting the webshells will be difficult, even though the reason for

our use is research. When training the model, the dataset is as diverse as possible

to achieve efficiency. Most research webshells can only be found on github4, but can

4/tennc/webshell, /xl7dev/WebShell, /BlackArch/webshells, /LuciferoO/webshell-

collector, /ysrc/webshell-sample, /webshellpub/awsome-webshell

/tennc/webshell
/xl7dev/WebShell
/BlackArch/webshells
/LuciferoO/webshell-collector
/LuciferoO/webshell-collector
/ysrc/webshell-sample
/webshellpub/awsome-webshell
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also be obtained from other unorthodox sources; however, the reliability will not be

high, especially with the ASP.NET webshell. After collecting 3.347 benign source

files and 2.113 webshells from multiple sources, we went through the cleaning and

preprocessing steps of the dataset. We use Yara, the same as the one in 2.3.1 to

remove 49 benign files from webshell datasets.

Finally, the total number of ASP.NET source files we gathered was 2.064 webshells

and 3.347 benign files. To train the model and test the effectiveness of the proposed

method, the dataset will be divided into two parts, with a ratio of 8:2 corresponding to

the training dataset and the test dataset. The following table shows our final datasets

for training and testing.

Table 2.11: ASP.NET Webshell and Benign Datasets

Training Set Testing Set

Webshell Dataset 1651 413

Benign Dataset 2678 669

2.4.6 Experimental Results and Evaluations

2.4.6.1 Implementation Details

Our ASP.NET-ASAF is conducted simulations in Python using TFLearn, a pop-

ular deep learning library to help programmers build and train deep learning models

quickly and efficiently. The experiments were performed in a workstation with 2 x

Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz (45MB Cache, 18-cores per CPU),

128GB memory, Windows 10 Professional, Visual Studio 2019 Enterprise, Python

release 2.7. For the deep learning platform, we use tensorflow v.1.14.0, scikit-learn

v.0.20.4, scipy v.1.2.2, numpy v.1.16.5, and yara-python v.3.10.0.

To evaluate the effectiveness of the ASP.NET-ASAF, we conducted experiments

with the following three scenarios:

• S1: Evaluate the ASP.NET webshells detection efficiency of Yara component in

ASP.NET-ASAF.

• S2: Evaluate the ASP.NET webshells detection efficiency of CNNmodel in ASP.NET-

ASAF.

• S3: Evaluate the ASP.NET webshells detection efficiency of ASP.NET-ASAF.
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2.4.6.2 Results and Evaluation

S1: Evaluation of Yara component in ASP.NET-ASAF: We use the test

data at 2.4.5 to evaluate Yara component with 669 rules. As shown in Table 2.12

and 2.13, the prediction result indicates that Yara was not effective against unknown

webshells with 67 files that were misclassified and the very high FNR up to 16.22%.

Table 2.12: Confusion matrix of ASP.NET webshell detection by using Yara

Real Webshell Real Benign

Predicted Webshell 346 8

Predicted Benign 67 661

Table 2.13: Key metrics of of ASP.NET webshell detection by using Yara (%)

Measure Value (%)

Accuracy 93.07

Precision 97.74

Recall 83.78

Specificity 98.80

F1-Score 90.22

False Positive Rate 1.2

False Negative Rate 16.22

S2: Evaluation of CNN model in ASP.NET-ASAF:

After selecting the most suitable parameters and training the CNN model men-

tioned in the hyperparameter tuning step, we use the test data at 2.4.5. The prediction

result is shown in Tables 2.14 and 2.15. The model achieves a high accuracy rate, re-

flecting the proportion of total correct predictions out of all predictions made. An

accuracy of 98.43% and an F1-score of 97.75% indicate that the CNN model is reli-

able and performs well in distinguishing between webshell and benign files. The false

negative rate (FNR) is the proportion of webshells incorrectly classified as benign.

With an FNR of 1.69%, the model shows a strong capability to detect webshells,

ensuring that very few actual webshells are missed.

S3: Evaluation of ASP.NET-ASAF:

Combining the advantages of the two Yara methods and the CNN deep learn-
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Table 2.14: Confusion matrix of ASP.NET webshell detection by using CNN

Real Webshell Real Benign

Predicted Webshell 406 10

Predicted Benign 7 659

Table 2.15: Key metrics of of ASP.NET webshell detection by using CNN (%)

Measure Value (%)

Accuracy 98.43

Precision 97.60

Recall 98.31

Specificity 98.51

F1-Score 97.95

False Positive Rate 1.49

False Negative Rate 1.69

ing model, ASP.NET-ASAF will solve the problem of effectively detecting webshell

attacks, including unknown patterns. Experiments on the data set in 2.11 give the

results of the confusion matrix and key measures in Table 2.16 and Table 2.17. The

result shows that the F1-score increased from 97.95% to 98.07%, accuracy increased

from 98.43% to 98.52% when compared to the CNN prediction result. With the ad-

vantage of being able to detect known webshells with very high accuracy, Yara will

minimize the number of webshells that CNN misclassifies as benign. When combin-

ing Yara with the CNN model, one misclassified webshell will be corrected. Then, the

FNR decreased from 1.69% to 1.49%.

Table 2.16: Confusion matrix of webshell detection by using ASP.NET-ASAF

Real Webshell Real Benign

Predicted Webshell 407 10

Predicted Benign 6 659

Currently, there are not many studies capable of detecting ASP.NET webshell

using source code analysis techniques, and the number of studies willing to share

source code is even more limited. Therefore, comparing results with many studies to

ensure objectivity is relatively difficult.
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Table 2.17: Key metrics of of ASP.NET webshell detection by using ASP.NET-ASAF

(%)

Measure Value (%)

Accuracy 98.52

Precision 97.60

Recall 98.55

Specificity 98.51

F1-Score 98.07

False Positive Rate 1.49

False Negative Rate 1.45

Table 2.18: Key metrics of of PHP webshell detection by using CNN (%)

Measure YARA CNN ASAF

Accuracy 93.07 98.43 98.52

Precision 97.74 97.60 97.60

Recall 83.78 98.31 98.55

Specificity 98.80 98.51 98.51

F1-Score 90.22 97.95 98.07

False Positive Rate 1.2 1.49 1.49

False Negative Rate 16.22 1.69 1.45

2.5 Summary of Chapter 2

Chapter 2 of the dissertation provides an overview of the foundational knowledge

of the approach to webshell detection using source code analysis. It then proposes an

DL-Powered Source Code Analysis Framework at 2.2, namely ASAF, to effectively

detect malicious code injection attacks into web application source code using known

and unknown webshells.

The dissertation is directed toward combining the advantages of two popular de-

tection techniques today, the pattern matching technique using Yara to effectively

detect known webshells and the CNN deep learning model to detect new webshells.

The framework includes a total of five components linked together through the ASAF

workflow. This framework allows us to build each specific system to effectively detect
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webshell attacks developed in different languages.

To prove the feasibility of this framework, for each type of interpreted and com-

piled language, the study has experimented with building systems to detect the two

most popular server-side programming languages today, PHP at 2.3 and ASP.NET

at 2.4. Experimental results are compared with a number of other research results to

demonstrate effectiveness.

The research results in this chapter have been presented in four publications, includ-

ing one article in the SCI-E/Scopus journal [LVH-J1], one article in an international

journal [LVH-J3] (indexed by E-SCI until 2023), one article in the national journal

of science and technology on information security [LVH-J4], and one paper at the

WoS/Scopus conference [LVH-C1]. Methods for detecting malicious code in web ap-

plication source code using PHP and ASP.NET have also been registered for patents

at the Department of Intellectual Property, Ministry of Science and Technology [LVH-

P1, LVH-P2]. In particular, the method for detecting ASP.NET webshells was granted

a patent on May 19, 2023.

Experimental results have shown that the framework has practical applicability

in supporting cybersecurity experts in periodically checking the source code of web

applications to accurately detect webshells. We can ignore the method’s time and

resource usage disadvantages. However, this also highlights the ongoing challenge of

developing a system that can detect webshell attacks in near real-time and integrates

with proactive defense systems to automatically block and filter these attack sources.

The next chapter of the dissertation will propose a solution based on network traffic

analysis to solve the above problem.



Chapter 3

DL-POWERED

PROACTIVE WEBSHELL

DETECTION AND

PREVENTION BY HTTP

TRAFFIC ANALYSIS

In previous chapter, we proposed a framework that allows for high-accuracy de-

tection of webshell attacks using source code analysis of web application source code.

Although this method can greatly support network security experts, it is only suit-

able for periodic testing sessions due to the disadvantage of consuming a lot of time

and resources. Therefore, there is still a need for another solution that allows simple

deployment, is capable of real-time detection of abnormal signs for web servers, and

automatically blocks attack sources to minimize damage to the system.

First, in this chapter, we address the problem of detecting webshell attacks us-

ing a HTTP traffic analysis of the network traffic with the web server. We clearly

define the challenges and objectives of the chapter that require achievement. From

there, we propose a model to detect and actively prevent webshell attacks. Finally,

we experiment with the model and compare the results with related works.

88
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3.1 Problem Statement

The innovation of web development technology has made web applications more

and more popular and is gradually replacing traditional native applications because

of the advantage of not depending on the operating system. Therefore, protecting

information security for the web system becomes more and more important but also

challenging. Hackers constantly look for zero-day security vulnerabilities [51] to ex-

ploit the system, and security experts constantly create patches or security solutions

to fix these vulnerabilities. Usually, security experts are the following, so the systems

always have zero-day vulnerabilities. We can deploy a lot of security solutions for the

system, such as intrusion prevention/detection systems, firewalls, web application

firewalls, etc., but these are not effective against zero-day vulnerabilities. For a web

server system, hackers will exploit zero-day vulnerabilities to inject webshells that

allow them to take full control of the server system remotely. At that time, installing

security patches for the system no longer makes sense because the system is already

under the control of the hacker. So what is an effective solution to the problem of

system security? The answer is security monitoring to detect abnormalities in the sys-

tem as soon as possible. Security experts immediately fix the system vulnerabilities

before things get worse.

Currently, there are two main techniques used today to detect webshell attacks:

host-based and network-based approaches [86, 52, 38]. Host-based is a method of an-

alyzing the webserver directly by scanning its source code files for malicious code [73]

which can achieve very high accuracy. However, the weakness of the code scanning

technique is that it is very time-consuming and resource-consuming to implement.

Therefore, using this method can lead to huge damage to the system due to late

attack detection. On the other hand, network-based analysis focuses on analyzing the

network data flow exchanged with web servers. Network Intrusion Detection/Pre-

vention Systems (NetIDPS) [59, 43, 98, 15] are pivotal in identifying and mitigating

webshell attacks, which pose significant threats to web server security by providing

unauthorized remote access to attackers. NetIDS functions by monitoring network

traffic for patterns indicative of malicious activity, employing both signature-based

and anomaly-based detection techniques to identify potential threats. In the context

of webshell attacks, NetIDPS plays a vital role by inspecting HTTP and HTTPS traf-

fic for anomalies or known malicious signatures associated with webshell operations.
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Signature-based detection leverages databases of known webshell patterns, enabling

the NetIDPS to recognize and alert administrators to the presence of these malicious

scripts or even automatically block the webshell connection. This approach is effec-

tive in identifying previously documented webshells but requires regular updates to

the signature database to remain relevant against emerging threats. Anomaly-based

detection methods enhance the capability of NetIDPS by establishing baselines of nor-

mal web server behavior and flagging deviations that may suggest a webshell attack.

Such deviations could include unusual traffic patterns, unexpected file modifications,

or atypical server responses. Anomaly detection is particularly valuable for identifying

novel or customized webshells that do not match existing signatures. But the reality

is not so simple, today’s webshells are equipped with many advanced techniques to

make the network traffic they generate difficult to detect. This means that NetIDPS

systems [28] will no longer be effective. However, the NetIDPS solution has an out-

standing advantage, which is the ability to accurately detect and block in real-time

anomalous network data flow that matches its ruleset.

Thanks to the development of ML/DL algorithms [85] that allow deep analysis

of network traffic to quickly detect anomalies, it has motivated many studies. The

authors in [89] propose a black-box method of webshell detection by analyzing the

HTML feature of Webshell pages using a support vector machine (SVM) classification

algorithm. This idea allows the authors to not directly perform source code scanning

on the web server and can implement integration with IDS systems. By monitoring

the request and response traffic to find abnormal behaviors, the authors in [91] pro-

pose a feature extraction technique from character-level traffic content. They then use

a combination of convolutional neural networks (CNN) and long-short term memory

network (LSTM) to detect webshells. The authors in [88] propose a supervised ma-

chine learning model to detect webshells based on HTTP traffic analysis. The authors

in [48] propose the Difficult Set Sampling Technique (DSSTE) algorithm, which is

a combination of Edited Nearest Neighbor and KMeans for intrusion detection. The

authors also experimented to compare DSSTE with other machine learning and deep

learning techniques using two popular IDPS network stream datasets, NSL-KDD and

CSE-CIC-IDS2018.

The above research results have shown that there are three major challenges that

need to be solved.

• Network intrusion detection systems based on signatures/rules are not effective



3.2. PROACTIVE WEBSHELL DETECTION AND PREVENTION 91

in detecting and preventing new generation webshells equipped with encryption

and obfuscation techniques.

• In intrusion detection deep learning models, especially for attacks like malware,

webshells, etc., the training dataset often has a much smaller number of intru-

sion attack samples than benign samples. This requires technical mechanisms to

minimize the effect of class imbalance when training deep learning models.

• Using MLA/DLAs to deeply analyze network flows enables accurate detection

of webshell attacks. However, it must be able to integrate with the NetIDPS

system for automatic blocking of suspicious webshell attack source addresses in

real-time.

However, this approach holds significant promise. Inspired by the above research

results, the dissertation determines the research direction that will focus on proposing

a comprehensive solution that combines signature-based detection techniques with the

deep neural network model to effectively real-time detect and prevent various types

of webshell attacks.

Three specific goals are as follows:

• Proposing a deep neural network (DNN) model allows in-depth analysis of net-

work traffics exchanged with web servers to detect real-time signs of webshell

attacks. The DNN model will undergo hyperparameter tuning to optimize per-

formance and accuracy.

• Proposing an improved loss-function algorithm to solve the problem of imbalance

in the data set.

• Integrating the DNN model with the NetIDPS solution to enable automatically

adding attack source IPs to a blacklist and proactively blocking URI queries to

webshell on the web server.

3.2 Proactive Webshell Detection and Prevention

3.2.1 Approach Direction

The intrusion detection method combining rule matching and the deep learning

model is illustrated in Fig. 3.1a and 3.1b. In this method, when the NetIDPS system
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(a) IPS mode

(b) IDS mode

Figure 3.1: Proactive Webshell Detection Method based Signatures and DNN model

device is deployed in inline mode, the network traffic, in both receiving and transmit-

ting directions, is captured by the NetIDPS system. After performing the decoding

step, it will proceed with the intrusion detection process based on two detectors. The

first detector uses a rule set for intrusion detection. This ruleset is stored in files that

have the same rule format as the rules of the Suricata. Each rule will have a pattern

or a unique signature that identifies network traffic as under attack. Based on the

ruleset, in the inline mode, each network packet will be inspected by the NetIDPS and

granted four actions: (i) drop the packet; (ii) reject the packet (discard the packet

and notify the source that sent the packet); (iii) pass and alert; (iv) pass without

warning.

For network flows whose actions are determined by the rule-based detector to be
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Drop or Reject, the NetIDPS system will proceed to intercept the incoming data

flows. Then, the network traffic flows will not be allowed on the outgoing side of

NetIDPS. In the event that the matching result is an alert action, the system will

acknowledge the alarm and still let the traffic flow to the outgoing side. Similarly, if

the incoming network traffic matches the pass action rule, NetIDPS does not inspect

the flows. The remaining cases, noted by "Other", correspond to network traffic

flows that do not match any rules of NetIDPS.

For the other cases, the traffic flows can be further examined by a detector, namely

DeepInspector. This detector is based on a deep learning model to detect whether

the traffic flow is possibly an intrusion by using a webshell. Activation of this deep

detector is also set by us through the deep_inspecting selection parameter in the

NetIDPS system configuration: deep_inspecting has the value "yes", then NetIDPS

will investigate further with data streams that are out of the set. the law; value "no",

the system will not integrate the deep verification process.

For deep inspection with a DNN machine learning model, we use six key param-

eters to control the deep inspection process: inspection_frequency, frequency_min,

frequency_max, and inspection_interval, interval_min, interval_max. These param-

eters are all natural numbers with units of milliseconds and have the following mean-

ings:

• inspection_frequency: sampling frequency for deep analysis when this value is

determined to be greater than 0; when this parameter is 0, the NetIDPS system

will sample deep analysis with random frequency in the range determined from

[frequency_min, frequency_max]. The default value of the sampling frequency

is 2 minutes, and the default interval is from 1 to 5 minutes.

• inspection_interval: sampling interval for deep analysis when this value is greater

than 0. In case this parameter has the value 0, the system will sample for deep

analysis in a random interval from [interval_min, interval_max]. The default

value of the sampling time is 20 seconds, and the default interval is between 10

and 30 seconds.

These parameters will be selected and configured in the NetIDPS system. With a

large number of network data streams (throughput of 10Gbps or more), the sampling

frequency and time will determine the performance of the NetIDPS system. Too

fast sampling frequency will result in the system having to execute many intrusion
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detections based on the deep learning model. Therefore, these parameters must also

be selected according to the capacity of the NetIDPS computing system.

The DeepInspector is built from a deep learning model using a deep neural network

(DNN). In this detector, the network traffic flows sampled in PCAP format will

undergo feature extraction. Each traffic flow will be extracted into 83 features using

the CICFlowMeter tool [32]. In our model, the four features "Flow ID, Src IP, Src

Port, Label" are completely ignored. From the remaining 79 features, 2 features "Dst

Port, Protocol" are used for the categorical variables, and the remaining 77 features

are considered continuous variables in the DNN model.

The feature set of the sampled network flows will be passed to the DNN-based

detector. Based on the DNN model trained from the specialized data set we collected

and built, DeepInspector will classify each network data stream into one of two classes,

of which one is a clean data flow (called Benign) and the other corresponds to web-

shell attacks (namely Webshell). In the case of the data flows classified as Webshell,

DeepInspector first sends the alerts to the alarm generator. Then, it will generate a

new rule or update an existing rule in the ruleset of NetIDPS in order to alert or even

drop/reject future similar traffic flows.

In case the NetIDPS system is deployed passively for network intrusion detec-

tion, as illustrated in Fig. 3.1b, the network traffic flows will be delivered to the

NetIDPS through a SPAN/Mirror port of the switch. In this deployment scenario, all

Drop/Reject actions cannot affect the network traffic flows. Therefore, the intrusion

prevention section is not involved in the operation of NetIDPS. And then, all rules

with Drop/Reject action are converted into alert actions.

3.2.2 Deep Learning Intrusion Detection Model

In the combined method that we propose in this present invention, we choose to

use a deep learning model using DNN. Based on our experimental results, the net-

work intrusion detection with the DNN deep learning model using the tabular_learner

technique of the FastAI development framework allows for the best accuracy, mini-

mizing the false detection rate when compared to other deep learning models as well

as other development frameworks like Keras, TensorFlow, Theano, etc. [61].

Fig. 3.2 illustrates our DNN model. There are four important components, in-

cluding: categorical variables, continuous variables, hidden layers, and output layers.

Type variables are those that have a finite non-numeric value, such as an IP address,
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Figure 3.2: Deep-learning Architecture for Webshell Detection

protocol, etc. Whereas continuous variables have any value within a range of values,

preset value. Besides the above components, the architectural model has the following

parameters:

• Batch Normalization: Batch normalization is one of the most popular normal-

ization methods in deep learning modeling. It enables faster and more stable

training of deep neural networks by stabilizing the distribution of input layers

during training. Batch normalization also serves as a routine to help reduce over-

crowding. Using batch normalization, the model training process does not need

to use dropout, so there is no loss of information.

• ReLU: The ReLU function is often used when training neural networks. ReLU

filters values less than 0 according to the trivial formula f(x) = max(0, x). The

latter has many advantages over Sigmoid and Tanh such as the convergence speed

and calculation being much faster.

The architecture of the DNN model applied in our proposed method is established

as follows:

• The two data flow characteristics, destination port (DstPort) and protocol (Pro-

tocol), are treated as two categorical variables. Each attribute will go through

the categorical embedding and dropout.

• The 77 characteristics related to network data flows and traffic features (specif-

ically ’Timestamp’, ’Flow Duration’, ’Tot Fwd Pkts’, ’Tot Bwd Pkts’, ’TotLen
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Fwd Pkts’, ’TotLen Bwd Pkts’, ’ Fwd Pkt Len Max’, ’Fwd Pkt Len Min’, ’Fwd

Pkt Len Mean’, ’Fwd Pkt Len Std’, ’Bwd Pkt Len Max’, ’Bwd Pkt Len Min’,

’Bwd Pkt Len Mean’, ’Bwd Pkt Len Std’, ’Flow Byts/s’, ’Flow Pkts/s’, ’Flow

IAT Mean’, ’Flow IAT Std’, ’Flow IAT Max’, ’Flow IAT Min’, ’Fwd IAT Tot’,

’ Fwd IAT Mean’, ’Fwd IAT Std’, ’Fwd IAT Max’, ’Fwd IAT Min’, ’Bwd IAT

Tot’, ’Bwd IAT Mean’, ’Bwd IAT Std’, ’Bwd IAT Max’, ’Bwd IAT Min’, ’Fwd

PSH Flags’, ’Bwd PSH Flags’, ’Fwd URG Flags’, ’Bwd URG Flags’, ’Fwd Header

Len’, ’Bwd Header Len’, ’Fwd Pkts/s’, ’Bwd Pkts/ s’, ’Pkt Len Min’, ’Pkt Len

Max’, ’Pkt Len Mean’, ’Pkt Len Std’, ’Pkt Len Var’, ’FIN Flag Cnt’, ’SYN Flag

Cnt’, ’RST Flag Cnt’ , ’PSH Flag Cnt’, ’ACK Flag Cnt’, ’URG Flag Cnt’, ’CWE

Flag Count’, ’ECE Flag Cnt’, ’Down/Up Ratio’, ’Pkt Size Avg’, ’Fwd Seg Size

Avg’ , ’Bwd Seg Size Avg’, ’Fwd Byts/b Avg’, ’Fwd P kts/b Avg’, ’Fwd Blk Rate

Avg’, ’Bwd Byts/b Avg’, ’Bwd Pkts/b Avg’, ’Bwd Blk Rate Avg’, ’Subflow Fwd

Pkts’, ’Subflow Fwd Byts’, ’Subflow Bwd Pkts’, ’Subflow Bwd Byts’, ’Init Fwd

Win Byts’, ’Init Bwd Win Byts’, ’Fwd Act Data Pkts’, ’Fwd Seg Size Min’, ’Ac-

tive Mean’, ’Active Std’, ’Active Max’, ’Active Min’, ’Idle Mean’, ’Idle Std’, ’Idle

Max’, ’Idle Min’) were used as continuous variables.

The categorical class label of the network data stream is also included with the at-

tributes in the first hidden class for training. This layer is composed of three standard

blocks: “Linear”, “ReLU” and “BatchNorm1D”. From 80 input attributes (including

layer label attributes), the output of the first hidden layer is set by us to 400 features.

For the second hidden layer, this layer structure is the same as the first hidden layer.

However, from the 400 input attributes, the output will be normalized to 100.The final

output layer assumes the role of classification through the linear filter. This set maps

from 100 input attributes to 1 unique value representing 1 class out of binary classes:

1 clean class (Benign) and 1 webshell attack class (Webshell).

3.2.3 Webshell Detection and Prevention

From the trained and stored DLWSD deep learning model, we built the DeepIn-

spector, deploying a service running in kernel mode (daemon), to receive network

traffic flows saved as PCAP files by NetIDPS. DeepInspector takes on the role

of monitoring the sampling flows generated frequently inspection_frequency during

inspection_duration by NetIDPS to analyze and detect webshell attacks. The pro-

cess of performing webshell analysis and detection is illustrated in Algorithm 3.1.
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Accordingly, when the NetIDPS system is configured to enable intrusion detection

mode that combines both law and machine learning, the network data streams will

be received and sent to DeepInspector system software according to a multi-process

communication mechanism using a Unix socket.

The PCAP data received by DeepInspector will be analyzed and converted into a

set of features through CICFlowmeter [32]. Each traffic flow is modeled through 83

features. Next, we normalize this feature set and keep only exactly 79 features used

to analyze and predict whether network flows are webshell attacks or not. Based on

the prediction result, we use the function argmax to find the Benign/Webshell classes

with the largest predicted probability. Then, for each webshell detected flow, DeepIn-

spector generates an EVE-log-styled alert in the specific class "Webshell Attacking"

of NetIDPS with a severity of 1. Depending on the current signature set of NetIDPS,

DeepInspector also generates a new rule with the Drop/Alert action to quickly detect

similar webshell-attacking intrusions. New rules generated from DeepInspector will

be saved in the directory /etc/NetIDPS/rules/ which contains the NetIDPS system’s

rule sets. From there, DeepInspector will send information to the NetIDPS system

via the Unix socket mechanism so that NetIDPS updates and uses new rules, serving

to prevent intrusion when there are similar attacks on network traffic flows later.

3.2.4 Handling Imbalanced Datasets

In fact, when implementing IDPS systems, compromised traffic flows are often tiny

compared to "benign" network flows. It is also shown in statistics that most of the

standard datasets related to network intrusion have a much lower number of attacked

flows than benign flows. The imbalance [30] samples between classes severely affects

both the training process and the classification process in machine learning models,

especially for deep learning models. For the binary classification problem, the class

having the most samples is called a "majority class"; the other is called a "minority

class".

From there, it is necessary to have methods to handle data imbalances between

classes. One of the methods of handling data imbalances between classes often used

in machine learning models is to assign weights to classes. The sample imbalances are

used to create the weights for each class in the training process. These weights are

used by the cross-entropy loss function in order to ensure that the majority class is

down-weighted accordingly. Thus, the loss function for the DNN training is built by
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Algorithm 3.1 Webshell Dectection
Input: f - PCAP traffic flows file.

Output: Alerts - EVE-log containing alerts for all webshell attack flows;

Rules - rulelist containing new rules or updating existing rules to alert/drop/reject

traffic flows

1: Alerts← ∅

2: Rules← ∅

3: F ← CICFlowmeter(f) ▷ extract 83 features of each flow from PCAP file f

4: Fin← F\[FlowID, SrcIP, SrcPort, Label] ▷ remove 4 unused features

5: preds← DLWSD.Predict(Fin) ▷ perform the prediction

6: FC = preds.argmax(axis = 1) ▷ get the flow classes: 0 - Benign; 1 - Webshell

7: for i← 0 to length(FC) do

8: if FC[i] == 1 then ▷ classified as Webshel flow

9: Alerts← EveWSAlert(F [i]) ▷ Constitute an EVE alert by using metadata

from the flow F[i]; set alert category being "Webshell" with severity of 1

10: Rules← WSRuleGenerator(F [i]) ▷ generate a new rule or update an

existing rule to handle the next similar flows

11: end if

12: end for

13: return Alerts;Rules

Algorithm 3.2.

3.3 Experiments and Evaluation

3.3.1 Environment

To validate the proposed method, we deployed a NetIDPS in an appliance having

a configuration of 2 x Intel Xeon-Platinum 8160 (2.1GHz/24-core); 384 GB DDR4-

2666 RAM; NVIDIA Tesla T4 16GB Computational Accelerator;SmartNIC Napatech

NT40E3-4-PTP (10Gb 4-port SFP+, 4 GB DDR3 RAM buffer). Suricata v6.0.3 is

used as the core of NetIDPS. However, many important components have also been

added in Suricata to be able to control the traffic flows and implement the deep

inspection strategy.

We use Python version 3.8 as a programming language with the following li-
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Algorithm 3.2 Loss Function to Balance Dataset
Input: df - Dataframe containing all samples, classified by the ’Label’ column.

Output: lossFunc - cross entropy loss function in order to ensure that the majority

class is down-weighted accordingly

1: samples← df.groupby(′Label′).count() ▷ count the samples for each class specified

by ’Label’

2: nB, nW = samples.iloc[0, 0], samples.iloc[1, 0]

3: wB = (nB + nW )/(2.0 ∗ nB) ▷ weight for Benign class

4: wW = (nB + nW )/(2.0 ∗ nW ) ▷ weight for Webshell class

5: lossFunc = CrossEntropyLossF lat(weight = [wB,wW ])

6: return lossFunc

braries and frameworks: Fastai V2.3.0, Scikit-learn V0.24.1, Matplotlib V3.4.1, Pan-

das V1.2.3, Numpy V1.20.2. For selecting and tuning hyperparameters in the DNN

model, we use the Adaptive Experimentation Platform, termed Ax 1, which is a ma-

chine learning system to help automate this process. Using Bayesian optimization

makes Ax suitable for a wide range of applications.

3.3.2 Dataset Preparation

To experiment, one of the biggest difficulties we encountered was data collection.

There are many published network flow datasets since 1998 such as DARPA (Lin-

coln Laboratory 1998-99), CAIDA (Center of Applied Internet Data Analysis 2002-

2016), ADFA (University of New SouthWales 2013), and CSE-CIC-IDS2017, CSE-

CIC-IDS2018 (Canadian Institute for Cybersecurity). However, these datasets cover

many types of network attacks, with very little data available about webshell attacks.

So to collect data for training and testing the model, we built a testbed system as

shown in Fig. 3.3 which is divided into two completely separated networks, namely

DMZ-Network and Attack-Networks. On the former, we deploy all common and nec-

essary equipment, including routers, firewalls, switches, and three servers, which are

a web server, a web application server, and a web database server. On the Attack-

Networks, we use the Kali Linux operating system as the attacker server, which uses

more than 400 types of PHP, ASP, ASPX, JS webshells. We use several craws website

tools to create the normally HTTP traffic as legal clients. Besides that, we also sim-

1https://ax.dev/



3.3. EXPERIMENTS AND EVALUATION 100

ulate webshell attacks by using Kali Linux to upload and execute webshell to create

intrusion traffic. Suricata is used as a packet capture and HTTP filtering tool and

saves network traffic into PCAP files.

Figure 3.3: Architecture of testbed system

Thus, in order to validate and evaluate the effectiveness of the DLWSD method,

we use two datasets:

• Dataset 1 (DS1): This is the data set that we directly build through the testbed

system described above. There are two labeled data types in the data set: Web-

shell representing a flow containing a Webshell attack embedded in packets and

sent directly to the webserver using the HTTP method, and Benign for normal

HTTP flow. Labeling data is also an important step that takes a considerable

amount of time and effort. In this step, we create an automatic tool in Python

for automatically labeling the data. There is a total of 180,089 Benign flows and

7,310 Webshell flows. The goal of using this dataset is to verify DLWSD’s ability

to correctly detect webshell attacks by analyzing the network traffic.

• Dataset 2 (DS2): We use a well-known and reliable dataset on CSE-CIC-IDS2018.

This dataset is published by the Canadian Institute for Cybersecurity [45] and is

used by many research projects. For our experiment, we chose the dataset 03-02-

2018 due to this dataset only containing bot attacked flows. This kind of attack

is considered a webshell-based attack. Thus, our goal when using this data set is

to objectively compare the efficiency of our DLWSD method with that of other
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studies using the same dataset.

After obtaining datasets, they are generated from CICFlowMeter for each dataset.

We convert timestamps to Unix epoch numeric values and just keep 79 features as

described in Section 3.2.2. We then shuffle the data before saving it into one file

containing all the labels. Finally, we obtained the two cleaned datasets presented in

Table 3.1.

Table 3.1: Total flows in cleaned datasets

Dataset Benign Flows Webshell Flows

DS1 180,079 7,210

DS2 758,334 286,191

From these two datasets, we constitute a new dataset DS3 for global testing by

combining DS1 and DS2. DS3 contains two parts: training and testing at a ratio of

7:3. Each part of DS3 is composed of DS1 and DS2 with the corresponding ratio.

Dataset split information is presented in Table 3.2.

Table 3.2: Number of training and testing samples

Begin Samples Webshell Samples

Training 656,710[126,054 DS1 - 530,656 DS2] 205,559[5,048 DS1 - 200,511 DS2]

Testing 281,703 [54,025 DS1 - 227,678 DS2] 87,845 [2,162 DS1 - 85,680 DS2]

3.3.3 Hyperparameter Optimization

We select model parameters based on a technique called Hyperparameter Opti-

mization [55]. We use Ax for optimal parameters. Ax is a platform for optimizing any

kind of experiment, including machine learning experiments, A/B tests, and simula-

tions. We use a technique called Bayesian Optimization. Bayesian optimization starts

by building a smooth surrogate model of the outcomes using Gaussian processes based

on the observations available from previous rounds of experimentation.

There are four hyperparameters that can be tuned, and they take two types of

values: range and choice, as shown in Table 3.3. From that, we obtained the learning

rate as 0.003; batch size as 96; number of epochs as 2; and [400, 100] for the features

of layers.
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Table 3.3: Hyperparameter optimization value

Hyperparameter Value Type Optimal value

Learning rate [0.001, 1.0] Range 0.003

Batch size [16, 32, 48, 64, 96, 128] Choice 64

Epochs [1, 2, ..., 15, 16] Choice 2

Layers [[200, 100], [400, 100] [1,000, 500]] Range [400, 100]

To ensure the hyperparameters are optimized, we perform k-fold cross-validation

with the DS1 and also measure the prediction time. We chose the number of folds as 5,

and Table 3.4 shows our cross-validation results. The results of 5-fold cross validation

are almost perfect with an average accuracy of 99.99%, F1-score of 99.99%, FPR ratio

0.216%, and execution time are also very short, under two seconds.

Table 3.4: Result of hyperparameter optimization with 5-fold cross validation for DS1

Epoch Accuracy Recall F1-score FPR Time (s)

1 99.99 100 100 0.2 0.90

2 100 100 100 0.0 1.35

3 99.98 99.99 99.99 0.34 1.96

4 99.99 100 99.99 0.2 0.98

5 99.98 99.99 99.99 0.34 1.00

Average 99.99 100 99.99 0.216 1.238

3.3.4 Results and Evaluation

From the proposed method, we built a tool to evaluate our method with the cleaned

datasets mentioned above. We implement DLWSD based on the FastAI framework.

To validate the efficiency of our method, DLWSD, three scenarios were built and

described as follows:

• S1: Use consecutively DS1 and DS2 to perform the training and testing the

DLWSD method without applying the adjustment of the imbalanced dataset.

• S2: Use consecutively DS1 and DS2 to perform the training and testing the

DLWSD method within handing the imbalanced dataset.

• S3: Use DS3 to train and test the DLWSD while balancing the classes.
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We use the following evaluation metrics: accuracy, precision, F1-score, recall, AUC,

and FPR, and we also measure the prediction time to show experimental results.

3.3.4.1 S1 Results

In this scenario, we perform 5-fold cross-validations with the DS1 and DS2 without

adjusting the imbalanced dataset by assigning the weights for classes. Cross-validation

is a statistical method used to estimate the performance of machine learning models.

The dataset will be randomly divided in an 80:20 ratio, corresponding to the training

and testing datasets at each fold. The goal of this scenario is to evaluate the effi-

ciency and performance of the DNN model that has been tuned for hyperparameter

optimization.

Table 3.5: DLWSD 5-fold cross-validation with DS1

Fold Accuracy Precision F1-score Recall AUC FPR Time(s)

1 99.90 99.11 99.55 100.00 99.99 0.89 3.74

2 99.98 99.52 99.76 100.00 99.99 0.48 3.59

3 99.98 99.38 99.69 100.00 99.99 0.62 3.59

4 99.98 99.58 99.69 99.79 99.79 0.42 3.65

5 99.98 99.45 99.72 100.00 99.99 0.55 3.62

AVG 99.98 99.41 99.68 99.96 99.95 0.59 3.63

Table 3.6: DLWSD 5-fold cross-validation with DS2

Fold Accuracy Precision F1-score Recall AUC FPR Time(s)

1 99.97 99.92 99.94 99.96 99.99 0.03 20.03

2 99.92 99.70 99.85 99.99 100.00 0.11 20.12

3 99.99 99.98 99.97 99.97 100.00 0.01 19.96

4 99.93 99.84 99.88 99.92 99.98 0.06 20.52

5 99.98 99.93 99.96 99.99 99.99 0.03 20.38

AVG 99.96 99.87 99.92 99.97 99.99 0.05 20.20

The evaluation results are shown in Table 3.5 and Table 3.6. For the DS1, the results

of 5-fold are almost perfect, with an average accuracy of 99.98%, F1-score of 99.96%,

FPR ratio 0.59%, and an execution time are also very fast at 36300 milliseconds for



3.3. EXPERIMENTS AND EVALUATION 104

20% of 56,187 samples. For the DS2, the results are even better when the number of

samples increases to 313,358 with the average values of accuracy, F1-score and FPR

being 99.96%, 99.92%, 0.05% respectively. The average time to classify a sample in

both datasets is about 32 milliseconds.

3.3.4.2 S2 Results

As mentioned above, the amount of data related to a webshell attack is relatively

low, which can lead to a misperception of model quality. The object of this scenario

is to help us directly compare the DLWSD with and without applying the handling

imbalance technique. Table 3.7 and Table 3.8 show the results of 5-fold cross validation

of DLWSD on the DS1 and DS2 datasets that assigned the weights for classes.

Table 3.7: Weighted-DLWSD 5-fold cross-validation with DS1

Fold Accuracy Precision F1-score Recall AUC FPR Time(s)

1 99.98 99.59 99.76 99.93 99.93 0.02 3.44

2 99.98 99.72 99.79 99.86 99.86 0.01 3.44

3 99.99 99.65 99.83 100.00 100.00 0.01 3.45

4 99.98 99.59 99.72 99.86 99.86 0.02 3.45

5 99.99 99.86 99.93 100.00 100.00 0.01 3.70

AVG 99.98 99.68 99.81 99.93 99.93 0.14 3.50

Table 3.8: Weighted-DLWSD 5-fold cross-validation with DS2

Fold Accuracy Precision F1-score Recall AUC FPR Time(s)

1 99.98 99.99 99.97 99.94 99.99 0.00 20.02

2 99.98 99.99 99.96 99.93 100.00 0.00 19.89

3 99.99 100.00 99.99 99.97 100.00 0.00 20.52

4 99.99 99.99 99.98 99.97 100.00 0.01 20.43

5 99.99 99.97 99.98 99.99 100.00 0.01 20.48

AVG 99.99 99.99 99.98 99.96 100.00 0.01 20.27

When directly comparing the results of DLWSD in scenarios S1 and S2, it is easy

to see that applying the class weighting technique gives better prediction results in

almost all evaluation metrics, except that the execution time is almost unchanged.
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Table 3.9: Experiment results with DS3 enhanced by balancing classes

True

Webshell

True

Benign

Predicted

Webshell
87,794 48

Predicted

Benign
58 281,645

(a) Confusion matrix

Metric Value(%)

Accuracy 99.97

Precision 99.94

F1-score 99.94

Recall 99.93

FNR 0.07

FPR 0.02

ROC-

AUC
99.90

(b) Performance indicators

Specifically, our method gives a very high F1-score of 99.81% with DS1 and 99.98%

with DS2. Moreover, the false positive rates are also tiny: only 0.14% and 0.01%

respectively, with DS1 and DS2. This means our method allows us to minimize the

rate of webshell mistake detection.

3.3.4.3 S3 Results

In this scenario, the dataset we use is DS3, which is a mixed dataset of DS1

and DS2. Through the comparison results between scenarios 1 and 2, it shows that

DLWSD when applying the class weighting technique gives better results, so in this

scenario, we will only use DLWSD enhanced by balancing classes. The goal of this

scenario is to provide the most objective evaluation results with a dataset that includes

the CSE-CIC-IDS2018 dataset widely used in many studies and our built dataset in

the testbed environment. The evaluation results in this scenario will show the practical

applicability of DLWSD.

From the results, we can see that DLWSD only mistakenly identified 58 out of

87,794 true webshell attacks, resulting in a relatively low FPR value of 0.02%. The

high-value accuracy of 99.97% and low False Negative Rate of 0.07% mean that the

rate of benign flow misclassified as a webshell flow is low.
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Table 3.10: Comparison of DLWSD with other methods with DS2

Method Accuracy(%) Precision(%) F1-score(%) Recall(%)

DLWSD 99.99 99.99 99.98 99.96

DNN fast.ai

[61]

99.92 99.85 99.85 99.85

DSSTE+

miniVGGNet

[48]

96.97 97.94 97.04 96.97

3.3.5 Comparisons

To objectively evaluate the effectiveness of the DLWSD method, we compared the

results with the DNN model using fast.ai in [61] and the DSSTE+miniVGGNet model

in [48] on the same CSE-CIC-IDS2018 dataset on 03-02-2018 (DS2). The results in

Table 3.10 show that all performance metrics of the DLWSD method are higher than

those of the other methods.

The source code and the dataset used in our experiment can be freely accessed

from the GitHub link: https://github.com/levietha0311/DLWSD/.

3.4 Summary of Chapter 3

In this chapter, we have surveyed, analyzed, evaluated, and identified three chal-

lenges to the problem of detecting and preventing the intrusion of malicious Webshell

code. In light of these challenges, we have proposed the DLWSD method based on

the DNN deep learning network model combined with the traditional rule-based de-

tection model. With the DNN deep learning model, we have modeled each network

flow by 79 features, of which 02 features are used for classification. With the loss

function correction to handle the training dataset imbalance problem, our proposed

DLWSD method gives excellent results with both our generated dataset (DS1) and

the prestigious dataset from the Canadian Institute for Cybersecurity (DS2). In-depth

experimental results show that DLWSD gives Webshell detection results with perfor-

mance metrics (Accuracy, Precision, F1-Score, FPR) of (99.98, 99.68, 99.81, 0.14) and

(99.99, 99.99, 99.98, 0.01) respectively. We also combined the two datasets above to

form DS3, using 70% for DLWSD training and the remaining 30% for testing. The
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results obtained with the DS3 are also very good with the corresponding performance

metrics (99.97, 99.94, 99.93, 0.02). Compared to the baseline results from previous

studies, DLWSD also showed superior results on the same experimental dataset.

From that, we have built a specialized DeepInspector suite for detecting Webshell

exploit-type intrusion attacks. This detector is integrated into the NetIDSP system to

enable automatically adding attack source IPs to a blacklist and proactively blocking

URI queries to webshell on the web server. Real-time deep inspection of only traffic

flows that do not satisfy any signature with periodic sampling at a defined frequency

and interval in DLWSD allows for avoiding bottlenecks when dealing with large-scale

network traffic. Actual test results allow us to control, detect, and prevent intrusions,

especially with tons of Webshell exploits with 4x10Gbps network flows.

The research results in this chapter have been presented in two publications: one ar-

ticle in the SCI-E/Scopus journal [LVH-J2], one paper at the WoS/Scopus conference

[LVH-C2].



CONCLUSION AND

FUTURE WORKS

Contribution Highlights

Webshell attacks pose significant dangers to organizations and individuals, primar-

ily due to their potential to grant attackers unauthorized remote access to a server.

Webshells are often difficult to detect because they can be hidden within legitimate

web applications and can mimic normal traffic. Research aims to improve the de-

tection accuracy of webshell attacks, but optimizing time and system resource usage

is critical to maintaining the security and integrity of web applications. To gener-

ally solve this problem, the dissertation approaches both directions based on network

traffic analysis and source code analysis techniques. Thanks to advances in deep learn-

ing models’ ability to automatically learn and extract complex patterns from large

datasets, that is particularly important for detecting unknown webshells, which may

use sophisticated techniques to avoid detection. Our dissertation delves deeply into

webshell attacks, their encryption, evasion, and obfuscation methods, as well as a

comprehensive review of related works. From there, we clearly define the research

direction and objectives. By the end of the study, the following contributions have

clearly demonstrated the achievement of all research objectives.

• Proposing an DL-Powered Source Code Analysis Framework (ASAF) that in-

tegrates signature-based techniques with deep learning (DL) algorithms. This

hybrid approach facilitates the rapid and precise detection of both known and

unknown webshell types. The proposed architectural framework serves as a guide-

line for developing specific models tailored to different programming languages.

• Proposing two ASAF-based comprehensive webshell detection solutions with

108
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CNN models tailored for PHP as interpreted and ASP.NET as compiled lan-

guages. Each model includes an algorithm that transforms the respective source

files into flat vectors, encompassing all webshell features. Furthermore, the mod-

els incorporate ML/DL algorithms optimized for their specific webshell detection

problems to ensure effective detection with minimal computational resources.

The effectiveness of these models will be evaluated based on defined measure-

ment criteria and compared to relevant studies. These two solutions have been

applied practically in the National Research Project No.KC.01.19/16-20, granted

by the Ministry of Science and Technology of Vietnam (MOST). and The so-

lution to detect ASP.NET webshell has been granted a patent certificate by the

Intellectual Property Office of Viet Nam.

• Proposing the DLWSD method to detection and proactively prevent the webshell

attacks, which combines a DNN deep learning network model with a traditional

rule-based detection model. By correcting the loss function to address the train-

ing dataset imbalance, our proposed DLWSD method achieves excellent results

on both our generated dataset and the reputable dataset from the Canadian

Institute for Cybersecurity. From that result, we developed a specialized DeepIn-

spector suite for detecting webshell exploit-type intrusion attacks. This detector

is integrated into the NetIDPS system using the Unix socket IPS communication

mechanism.

Dissertation Limitations

Although the dissertation has achieved good research results and made practical

contributions as mentioned above, it still has limitations, specifically as follows:

• Most of the current research related to detecting webshell attacks uses autogen-

erated data sets. This shows that there is actually no webshell data set that is

considered standard and widely used in the research community. Out of that

general trend, the dissertation is also using self-collected data sets, thus causing

many difficulties in objectively comparing the results of other studies.

• The diversity of server-side programming languages leads to a diversity of web-

shell types. Besides, each type of webshell, according to programming languages,

has different characteristics, so different feature extraction methods need to be



110

built. Because of time and resource limitations, the dissertation only chose the

two most popular languages today, PHP and ASP.NET, as research and experi-

mental subjects.

• The field of artificial intelligence is currently exploding and constantly making

new advances. The introduction of advanced deep learning and machine learning

models is continuously being made. Due to time limitations, the dissertation has

not been able to research and test the latest current models to apply to the

webshell detection problem.

Future Works

Although the dissertation achieved significant results, this field still has a lot of

room for expanding research. In the future, we would like to explore the following

research directions:

• Conducting a general survey of webshell datasets used in current research, thereby

building a good data set that can be used as a standard for later research related

to webshells.

• Continue research and experimentation with the latest single DL/ML models and

ensemble models to improve the ability to accurately detect advanced webshells.

• Deeper research into the operating mechanism and characteristics of Webshell

will allow the construction of toolkits to automate the Yara rule creation process.

• Expanding research on webshells written in other languages, such as JSP, Ruby,

Python, etc., towards building a general model that can effectively detect all

types of webshells without depending on the programming language.
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