
VIETNAM NATIONAL UNIVERSITY, HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

NGUYEN THU TRANG

Automated Localization and Repair for Variability Faults

in Software Product Lines

DOCTOR OF PHILOSOPHY DISSERTATION

Major: Software Engineering

Hanoi - 2024



Abstract

Software Product Line (SPL) systems are becoming popular and widely employed to de-

velop large industrial projects. However, their inherent variability characteristics pose

extreme challenges for assuring the quality of these systems. Although automated de-

bugging in single-system engineering has been studied in-depth, debugging SPL systems

remains mostly unexplored. In practice, debugging activities in SPL systems are often

performed manually in an ad-hoc manner. This dissertation sheds light on the automated

debugging SPL systems by focusing on three fundamental tasks, including false-passing

product detection, variability fault localization, and variability fault repair.

First, this dissertation aims to improve the reliability of the test results by detecting false-

passing products in SPL systems failed by variability bugs. Given a set of tested products

of an SPL system, our approach, Clap, collects failure indications in failing products

based on their implementation and test quality. For a passing product, Clap evaluates

these indications, and the stronger the indications, the more likely the product is false-

passing . Specifically, the possibility of the product being false-passing is evaluated based

on if it has a large number of statements that are highly suspicious in the failing products

and if its test suite is lower quality compared to the failing products’ test suites.

Second, this dissertation presents VarCop, a novel and effective variability fault localiza-

tion approach. For an SPL system failed by variability bugs, VarCop isolates suspicious

code statements by analyzing the overall test results of the sampled products and their

source code. The isolated suspicious statements are the statements related to the inter-

action among the features that are necessary for the visibility of the bugs in the system.

In VarCop, the suspiciousness of each isolated statement is assessed based on both the

overall test results of the products containing the statement as well as the detailed results

of the test cases executed by the statement in these products.

Third, this dissertation proposes two approaches, product-based and system-based, to repair

the variability bugs in an SPL system to fix the failures of the failing products and not to

break the correct behaviors of the passing products. For the product-based approach, each

failing product is fixed individually, and the obtained patches are then propagated and

validated on the other products of the system. For the system-based approach, all the

products are repaired simultaneously. The patches are generated and validated by all the

sampled products of the system in each repair iteration. Moreover, to improve the repair

performance of both approaches, this Dissertation also introduces several heuristic rules

for effectively and efficiently deciding where to fix (navigating modification points) and how

to fix (selecting suitable modifications). These heuristic rules use intermediate validation

results of the repaired programs as feedback to refine the fault localization results and



evaluate the suitability of the modifications before actually applying and validating them

by test execution.

To evaluate our approaches, this dissertation conducted several experiments on a large

public dataset of buggy SPL systems. The experimental results show that Clap can

effectively detect false-passing and true-passing products with an average accuracy of

more than 90%. Especially, the precision of false-passing product detection by Clap is

up to 96%. This means among ten products predicted as false-passing products, more

than nine products are precisely detected.

For variability fault localization, VarCop significantly improves two state-of-the-art tech-

niques by 33% and 50% in ranking the incorrect statements in the systems containing a

single bug each. In about two-thirds of the cases, VarCop correctly ranks the buggy

statements at the top-3 positions in the ranked lists. For the cases containing multiple

bugs, VarCop outperforms the state-of-the-art approaches two times and ten times in

the proportion of bugs localized at the top-1 positions.

Furthermore, for repairing variability faults, our results show that the product-based ap-

proach is around 20 times better than the system-based approach in the number of correct

fixes. Notably, the heuristic rules could improve the performance of both approaches by

increasing of 30-150% the number of correct fixes and decreasing of 30-50% the number

of attempted modification operations.

Keywords: Software product line, variability fault, coincidential correctness, fault local-

ization, automated program repair



Chapter 1

Introduction
Nowadays, Software Product Line (SPL) systems (or Configurable Systems, in general)

are becoming popular and widely employed to develop large industrial projects. An SPL

system is a product family containing a set of products sharing a common code base. Each

product is identified by the selected features. In other words, a project adopting the SPL

methodology can tailor its functional and nonfunctional properties to the requirements of

users. This has been done using a very large number of options which are used to control

different features additional to the core software. A set of selections of all the features

(configurations) defines a program variant (product). For example, Linux Kernel supports

thousands of features controlled by +12K compile-time options that can be configured to

generate specific kernel variants for billions of scenarios.

The variability of SPL system creates many benefits in software developments. How-

ever, this characteristic also challenges Quality Assurance (QA). In comparison with the

traditional single-system engineering (aka. non-configurable system), fault detection, lo-

calization, and repair through testing in SPL systems are more problematic, as a bug can

be variable (so-called variability bug), which can only be exposed under certain combi-

nations of the system features. In particular, there exists a set of features that must be

selected to be on and off together to necessarily reveal the bug. Due to the presence/ab-

sence of the interaction among the features in such set, the buggy statements behave

differently in the products where these features are on and off together or not. Hence,

the incorrect statements can only expose their bugginess in certain products, yet cannot

in others. Specially in an SPL system, variability bugs only cause failures in certain

products, while the others still pass all their tests.

Although automated debugging in single-system engineering has been studied in-depth,

debugging SPL systems still remains mostly unexplored. This dissertation focuses on

automated debugging SPL systems in three main tasks: detecting false-passing products,

localizing variability faults, and repairing such faults in SPL systems. Our proposed

process for automated debugging SPL system is shown in the bottom half of Figure 1.1.

Due to the dynamic nature of SPL systems, with numerous combinations and interactions

1



SPL system ms
Products

Detecting 
False-passing products Localizing faults Reparing faults 

ms
Test results

Sampling Testing

Te
st
in
g

D
eb
ug
gi
ng

Figure 1.1: The proposed debugging process of SPL systems

among features, it amplifies the difficulties of debugging the buggy SPL systems.

This dissertation aims to propose approaches for automatically debugging SPL systems

failed by variability bugs. To improve the reliability of the test results, this dissertation

propose Clap, an approach for detecting false-passing products. Next, this dissertation

presents VarCop, a novel FL approach specialized for variability faults of SPL systems.

Finally, this dissertation introduces two product-based and system-based approaches to

automatically repairing variability faults.

First, this dissertation introduces Clap, an approach for detecting false-passing prod-

ucts of buggy SPL systems. The intuition of our approach is that for a buggy SPL system,

the sampled products can share some common functionalities. If the unexpected behav-

iors of the functionalities are revealed by the tests in some (failing) products, the other

products having similar functionalities are likely to be caused failures by those unex-

pected behaviors. In Clap, false-passing products can be detected based on the failure

indications which are collected by reviewing the implementation and test quality of the

failing products. To evaluate the possibility that a passing product is a false-passing one,

this dissertation proposes several measurable attributes to assess the strength of these

failure indications in the product. The stronger indications, the more likely the product

is false-passing .

Second, this dissertation proposes VarCop, a novel approach for localizing variability

bugs. Our key ideas in VarCop is that variability bugs are localized based on (i) the

interaction among the features which are necessary to reveal the bugs, and (ii) the buggi-

ness exposure which is reflected via both overall test results at the product-level and the

detailed test results at the test case-level.

Third, this dissertation proposes two approaches, product-based and system-based, for au-

tomatically repairing variability bugs of the SPL systems. Furthermore, this dis-

2



sertation also introduces several heuristic rules for improving the performance of the two

approaches in repairing buggy SPL systems. this dissertation starts from the observation

that, in order to effectively and efficiently fix a bug, an APR tool must correctly decide

(i) where to fix (navigating modification points) and (ii) how to fix (selecting suitable

modifications). Our heuristic rules focus on enhancing the accuracy of these tasks by

leveraging intermediate validation results of the repair process.

In summary, this dissertation makes the following main contributions:

• The formulation of the false-passing product detection problem in SPL systems and

a large benchmark for evaluating false-passing product detection techniques.

• Clap: an effective approach to detect false-passing products in SPL systems and

mitigate their negative impact on variability fault localization performance. Clap’s

implementation can be found at: https: // ttrangnguyen. github. io/ CLAP/ .

• A formulation of Buggy Partial Configuration (Buggy PC) where the interaction

among the features in the Buggy PC is the root cause of the failures caused by

variability bugs in SPL systems.

• VarCop: A novel effective approach/tool to localize variability bugs in SPL systems.

VarCop’s implementation can be found at: https: // ttrangnguyen. github.

io/ VARCOP/ .

• Heuristic rules for navigating modification points and selecting suitable modifications

to improve the performance of APR tools.

• The product-based and system-based approaches for repairing variability bugs in the

source code of SPL systems. The implementation the proposed approaches can be

found at: https: // github. com/ ttrangnguyen/ SPLRepair .

• Extensive experimental evaluations showing the performance of the approaches.

The remainder of this dissertation is organized as follows. Chapter 2 introduces the back-

ground and reviews the related studies. Our proposed approach for detecting false-passing

products is introduced in Chapter 3. The proposed approach for localizing variability

faults is described in Chapter 4. Chapter 5 shows our two product-based and system-

based approaches for repairing variability faults in SPL systems. Finally, Chapter 6

summarizes and concludes this dissertation.

3

https://ttrangnguyen.github.io/CLAP/
https://ttrangnguyen.github.io/VARCOP/
https://ttrangnguyen.github.io/VARCOP/
https://github.com/ttrangnguyen/SPLRepair


Chapter 2

Background and Literature Review
This chapter introduces background and the concepts which are used in the following

sections of the dissertation. First, this chapter introduces the key concepts of the SPL

systems, the main testing methodologies, FL and APR techniques. Next, this chapter

reviews the related works. Finally, this chapter introduces the popular benchmarks for

evaluating testing and debugging approaches of the SPL systems.

For SPL engineering, instead of analyzing and implementing a single product each, de-

velopers target a variety of products that are similar but not identical. For this purpose,

the development process of SPL systems considers two important factors: variability and

reuse. In the overview process of developing an SPL system, there are two main processes:

Domain engineering and Application engineering. Overall, an SPL is a product family

that consists of a set of products sharing a common code base. These products distinguish

from the others in terms of their features.

Unlike non-configurable code, bugs in SPL systems can be variable and only cause the

failures in certain products.

Definition 2.1 (Variability Bug). Given a buggy SPL system S and a set of products

of the system, P , which is sampled for testing, a variability bug is an incorrect code

statement of S that causes the unexpected behaviors (failures) in a set of products which

is a non-empty strict subset of P .

In order to guarantee the quality of software, testing is the most popular method. Al-

though testing could help discover faults due to the observed erroneous behaviors, finding

and fixing them is an entirely different matter. Fault localization, identifying the locations

of program faults, is critical in program debugging, yet widely recognized as a tedious,

time-consuming, and prohibitively expensive activity. For effective and efficient fault find-

ing, multiple FL approaches for partially or fully automated figuring out the positions of

the faults have been proposed. These FL approaches are often categorized into eight

groups according to their techniques, including slice-based, spectrum-based, statistics-

based, program state-based, machine learning-based, data mining-based, model-based,

4



and miscellaneous techniques.

Amongst these techniques, Spectrum-Based Fault Localization (SBFL) is considered the

most prominent due to its lightweight, efficiency, and effectiveness. Specifically, SBFL is

a dynamic program analysis technique that leverages the testing information (i.e., test

results and code coverage) for measuring the suspiciousness scores of the code components

such as statements, basic blocks, methods, etc. The intuition is that, in a program, the

more failed tests and the fewer passed tests executed by a code component, the more

suspicious the code component is. The component with the higher suspiciousness score is

more likely to be buggy.

To reduce the cost of software maintenance, multiple APR techniques have been proposed

in the past. The most popular APR approach is test-suite-based program repair, such

as GenProg, Nopol, and Cardumen, which use test suites as the specification of the

program’s expected behaviors. For repairing a program failed by at least one test, these

APR approaches attempt to generate candidate patches. Then, the available test cases

are used to check whether the generated patches can fix the program.

5



Chapter 3

False-passing Product Detection
Thorough testing is generally required to guarantee the quality of programs. However,

it is often hard, tedious, and time-consuming to conduct thorough testing in practice.

Various bugs could be neglected by the test suites since it is extremely difficult to cover

all the programs’ behaviors. Moreover, there are kinds of bugs which are challenging to

be detected due to their difficulties in infecting the program states and propagating their

incorrectness to the outputs. Consequently, even when the defects is reached, there are

test cases that still obtain correct outputs, i.e., coincidentally correct/passed tests. Indeed,

coincidental correctness is a prevalent problem in software testing, and this phenomenon

causes a severely negative impact on FL performance.

Similar to testing in non-configurable code, the coincidental correctness phenomenon also

happens in SPL systems and causes difficulties in finding faults in these systems. Specif-

ically, for an SPL system, a set of products is often sampled for testing. Each sampled

product is composed of a set of features of the system and tested individually by its

test suite as a singleton program. For a buggy SPL system, the bugs could be in one

or more products. Ideally, if a product contains bugs (buggy products), the bugs should

be revealed by its test suite. In other words, there should be at least a failed test after

testing. However, if the test suite of a buggy product is ineffective in detecting the bugs,

the product’s overall test result will be passing. For instance, the suite does not cover

the product’s buggy statements or those test cases could reach the buggy statements but

could not propagate the incorrectness to the outputs, the product still passes all the tests.

Such a passing product is indeed a buggy product, yet incorrectly considered as passing.

That passing product is namely a false-passing product. Due to the unreliability of test

results, these false-passing products might negatively impact the FL performance. In

particular, the performance of two main SBFL strategies in SPL systems, product-based

and test case-based, is affected.

First, the product-based FL techniques evaluate the suspiciousness of a statement in a

buggy SPL system based on the appearance of the statement in failing and/or passing

products. Specially, the key idea to find bugs in an SPL system is that a statement which

6



is included in more failing products and fewer passing products is more likely to be buggy

than the other statements of the system. Misleadingly counting a buggy product as a

passing product incorrectly decreases the number of failing products and increases the

number of passing products containing the buggy statement. Consequently, the buggy

statement is considered less suspicious than it should be.

Second, the test case-based FL techniques measure the suspicious scores of the statements

based on the numbers of failed and passed tests executed by them. Indeed, false-passing

products could lead to under-counting the number of failed tests and over-counting the

number of passed tests executed by the buggy statements. The reason is that false-passing

products contain bugs, but there is no failed test. In these false-passing products, the

buggy statements are not executed by any test, or they are reached by several tests, yet

those tests coincidentally passed. Both low coverage test suite and coincidentally passed

tests can cause inaccurate evaluation for the buggy statements.

This chapter introduces Clap, a novel false-passing product detection approach for SPL

systems that failed by variability bugs. The intuition of our approach is that for a buggy

SPL system, the sampled products can share some common functionalities. If the unex-

pected behaviors of the functionalities are revealed by the tests in some (failing) products,

the other products having similar functionalities are likely to be caused failures by those

unexpected behaviors. In Clap, false-passing products can be detected based on the fail-

ure indications which are collected by reviewing the implementation and test quality of

the failing products. To evaluate the possibility that a passing product is a false-passing

one, this chapter proposes several measurable attributes to assess the strength of these

failure indications in the product. The stronger indications, the more likely the product

is false-passing .

The proposed attributes are belonged to two aspects: product implementation (products’

source code) and test quality (the adequacy and the effectiveness of test suites). The at-

tributes regarding product implementation reflect the possibility that the passing product

contains bugs. Intuitively, if the product has more (suspicious) statements executing the

tests failed in the failing products of the system, the product is more likely to contain

bugs. For the test quality of the product, the test adequacy reflects how its suite covers

the product’s code elements such as statements, branches, or paths. A low-coverage test

suite could be unable to cover the incorrect elements in the buggy product. Hence, the

product with a lower-coverage test suite is more likely to be false-passing . Meanwhile, the

7



test effectiveness reflects how intensively the test suite verifies the product’s behaviors and

its ability to explore the product’s (in)correctness. The intuition is that if the product is

checked by a test suite which is less effective, its overall test result is less reliable. Then,

the product is more likely to be a false-passing one.

Furthermore, this dissertation discusses several strategies to mitigate the negative impact

of false-passing products on the performance of the FL approaches. Since the negative

impact is mainly caused by the unreliability of the test results, our goal is to improve

the reliability of the test results by enhancing the test quality based on the failure indi-

cations. Moreover, the reliability of test results could also be improved by disregarding

the unreliable test results at either product-level or test case-level.

This dissertation conducted several experiments on a large dataset of variability bugs

which contains 823 buggy versions of six widely-used SPL systems. Totally, there are

14,191 false-passing products and 22,555 true-passing products. Our results show that

Clap achieves more than 90% Accuracy in detecting false-passing and true-passing prod-

ucts. This dissertation also evaluates the capability of Clap in mitigating the negative

impact of false-passing products on the FL performance. The experimental result shows

that Clap can greatly mitigate the negative impact of false-passing products on localizing

variability bugs and help developers find bugs much faster.

8



Chapter 4

Variability Fault Localization
The variability that is inherent to SPL systems challenges QA activities. In comparison

with the single-system engineering, fault detection and localization through testing in

SPL systems are more problematic, as a bug can be variable, which can only be exposed

under some combinations of the system features. Specially, there exists a set of the

features that must be selected to be on and off together to necessarily reveal the bug.

Due to the presence/absence of the interaction among the features in such set, the buggy

statements behave differently in the products where these features are on and off together

or not. Hence, the incorrect statements can only expose their bugginess in some particular

products, yet cannot in the others. Specially, in an SPL system, variability bugs only

cause failures in certain products, and the others still pass all their tests. This variability

property causes considerable difficulties for localizing this kind of bugs in SPL systems.

Despite the importance of variability fault localization, the existing FL approaches are

not designed for this kind of bugs. These techniques are specialized for finding bugs in a

particular product. For instance, to isolate the bugs causing failures in multiple products

of a single SPL system, the slice-based methods could be used to identify all the failure-

related slices for each product independently of others. Consequently, there are multiple

sets of (large numbers of) isolated statements that need to be examined to find the bugs.

This makes the slice-based methods become impractical in SPL systems.

In addition, the state-of-the-art technique, SBFL can be used to calculate the suspicious-

ness scores of code statements based on the test information (i.e., program spectra) of

each product of the system separately. For each product, it produces a ranked list of

suspicious statements. As a result, there might be multiple ranked lists produced for a

single SPL system which is failed by variability bugs. From these multiple lists, develop-

ers cannot determine a starting point to diagnose the root causes of the failures. Hence,

it is inefficient to find variability bugs by using SBFL to rank suspicious statements in

multiple variants separately.

Another method to apply SBFL for localizing variability bugs in an SPL system is that one

can treat the whole system as a single program. This means that the mechanism control-

9



ling the presence/absence of the features in the system (e.g., the preprocessor directives

#ifdef) would be considered as the corresponding conditional if-then statements dur-

ing the localization process. By this adaptation, a single ranked list of the statements

for variability bugs can be produced according to the suspiciousness of each statement.

Note that, this dissertation considers the product-based testing. Specially, each product

is considered to be tested individually with its own test set. Additionally, a test, which

is designed to test a feature in domain engineering, is concretized to multiple test cases

according to products’ requirements in application engineering. Using this adaptation,

the suspiciousness of the statement is measured based on the total numbers of the passed

and failed tests executed by it in all the tested products. Meanwhile, the characteristics

including the interactions between system features and the variability of failures among

products are also useful to isolate and localize variability bugs in SPL systems. However,

these kinds of important information are not utilized in the existing approaches.

This chapter proposes VarCop, a novel fault localization approach for variability bugs.

Our key ideas in VarCop is that variability bugs are localized based on (i) the interaction

among the features which are necessary to reveal the bugs, and (ii) the bugginess exposure

which is reflected via both the overall test results of products and the detailed result of

each test case in the products.

For a buggy SPL system, VarCop detects sets of the features which need to be selected

on/off together to make the system fail by analyzing the overall test results (i.e., the state

of passing all tests or failing at least one test) of the products. This dissertation calls

each of these sets of the feature selections a Buggy Partial Configuration (Buggy PC).

Then, VarCop analyzes the interaction among the features in these Buggy PCs to isolate

the statements which are suspicious. In VarCop, the suspiciousness of each isolated

statement is assessed based on two criteria. The first criterion is based on the overall

test results of the products containing the statement. By this criterion, the more failing

products and the fewer passing products where the statement appears, the more suspicious

the statement is. Meanwhile, the second one is assessed based on the suspiciousness of

the statement in the failing products which contain it. Specially, in each failing product,

the statement’s suspiciousness is measured based on the detailed results of the products’

test cases. The idea is that if the statement is more suspicious in the failing products

based on their detailed test results, the statement is also more likely to be buggy in the

whole system.

10



This chapter conducted experiments to evaluateVarCop in both single-bug and multiple-

bug settings on a dataset of 1,570 versions (cases) containing variability bug(s). The per-

formance of VarCop is compared with the state-of-the-art approaches including (SBFL),

the combination of the slicing method and SBFL (S-SBFL), and Arrieta et al. using 30

most popular SBFL ranking metrics. The experimental results show that VarCop sig-

nificantly outperformed the baselines in all the studied metrics.

11



Chapter 5

Automated Variability Fault Repair
In practice, bugs are an inevitable problem in software programs. Developers often need to

spend about 50% of their time on addressing software bugs. Detecting and fixing bugs in

SPL systems could be very complicated due to their variability characteristics. Echeverŕıa

et al. conducted an empirical study to evaluate engineers’ behaviors in fixing errors and

propagating the fixes to other products in an industrial SPL system. They showed that

fixing buggy SPL systems is challenging, especially for large systems. Indeed, in an SPL

system, each product is composed of a different set of features. Due to the interaction of

different features, a bug in an SPL system could manifest itself in some products of the

system but not in others, so called variability bugs. In order to fix variability bugs, the

program repair approaches need to find patches which not only work for one product but

also for all the products of the system, i.e., the program repair approaches need to fix the

incorrect behaviors of all failing products, and do not break the correct behaviors of the

passing products.

To reduce the cost of software maintenance and alleviate the heavy burden of manually

debugging activities, multiple automatic program repair (APR) approaches have been

proposed in recent decades. These approaches employ different techniques to automati-

cally (i.e., without human intervention) synthesize patches that eliminate program faults

and obtain promising results. However, these approaches focus on fixing bugs in a single

non-configurable system.

In the context of SPL systems, there are several studies attempting to deal with the

variability bugs at different levels, such as model or configuration. For example, Arcaini

et al. attempt to fix bugs in the variability models. Weiss et al. repair misconfigurations

of the SPL systems. However, repairing variability bugs at the source code level still

remains unexplored.

This research aims to make the first attempt at automatically repairing variability bugs

in the source code of SPL systems. This chapter proposes two approaches, product-based

and system-based, for repairing buggy SPL systems at the source code level. For the

product-based approach (ProdBasedbasic), each failing product of the system is repaired

12



individually, and then the obtained patches, which cause the product under repair to

pass all its tests, are propagated and validated on the other products of the system. For

the system-based approach (SysBasedbasic), instead of repairing one individual product

at a time, all the products are considered for repairing simultaneously. Specifically, the

patches are generated and then validated by all the sampled products of the system in

each repair iteration. For both approaches, the valid patches are the patches causing all

the available tests of all the sampled products of the system to pass.

Furthermore, this chapter also introduce several heuristic rules for improving the perfor-

mance of the two approaches in repairing buggy SPL systems. The heuristic rules are

started from the observation that, in order to effectively and efficiently fix a bug, an APR

tool must correctly decide (i) where to fix (navigating modification points) and (ii) how to

fix (selecting suitable modifications). Our heuristic rules focus on enhancing the accuracy

of these tasks by leveraging intermediate validation results of the repair process.

For navigating modification points, APR tools often utilize the suspiciousness scores,

which refer to the probability of the code elements to be faulty. These scores are often

calculated once for all before the repair process by FL techniques such as spectrum-based

or mutation-based FL. However, a lot of additional information can be obtained during

the repairing process, such as the modified programs’ validation results. Such information

can provide valuable feedback for continuously refining the navigation of the modifica-

tion points. Therefore, in this work, besides suspiciousness scores, the fixing scores of

the modification points, which refer to the ability to fix the program by modifying the

source code of the corresponding points, are used for navigating modification points in

each repair iteration. The fixing scores are continuously measured and updated according

to the intermediate validation results of the modified programs. The intuition is that if

modifying the source code at a modification point mp causes (some of) the initial failed

test(s) to be passed, mp could be the correct position of the fault or have relations with the

fault. Otherwise, modifying its source code cannot change the results of the failed tests.

The modification point with a high fixing score and high suspiciousness score should be

prioritized to attempt in each subsequent repair iteration.

After a modification point is selected, APR tools generate and select suitable modifications

for that point and evaluate them by executing tests. This dynamic validation is time-

consuming and costs a large amount of resources. In order to mitigate the wasted time

of validating incorrect modifications, this dissertation introduces modification suitability

13



measurement for lightweight evaluating and quickly eliminating unsuitable modifications.

The suitability of a modification at position mp is evaluated by the similarity of that

modification with the original source code and with the previous attempted modifications

at mp. The intuition is that the correct modification at mp is often similar to its original

code and the other successful modifications at this point, while the modifications similar

to the failed modifications are often incorrect. Thus, the more similar a modification is

to the original code and to the successful modifications, and the less similar it is to the

failed modifications, then the more suitable that modification is for attempting at mp.

These heuristic rules are embedded on both product-based and system-based approaches,

and the enhanced versions are called ProdBasedenhanced and SysBasedenhanced.

To evaluate the proposed approaches, this dissertation conducts several experiments with

ProdBasedbasic, SysBasedbasic, ProdBasedenhanced, and SysBasedenhanced on a dataset

of 318 buggy versions of 5 SPL systems (i.e., 318 variability bugs). The experimental

results show that the product-based approach is considerably better than the system-based

approach by 12 to 30 times in the number of plausible fixes and about 20 times in the

number of correct fixes. Interestingly, our heuristics could help to boost the performance

of both product-based and system-based approaches by up to 200%. For instance, by

adopting the APR tool Cardumen, ProdBasedbasic and SysBasedbasic can correctly

fix 13 and 0 systems respectively, while ProdBasedenhanced and SysBasedenhanced

correctly fix 40 and 1 systems respectively. Moreover, the repair performance could

be negatively impacted by FL tools since the modification points are selected based on

FL results which are often imperfect. To mitigate the impact of the third-party FL tool,

this dissertation assesses the effectiveness of the repair approaches if correct FL results

are provided. In this experiment, the results show that the product-based approach is

better than the system-based approach about 3 times in effectiveness and 9 times in

efficiency. In addition, the proposed heuristic rules help to increase 30-150% the number

of correct fixes and decrease 30-70% the number of attempted modification operations

of the corresponding basic approaches.

14



Chapter 6

Conclusion
The contribution of the dissertation: SPL systems have gained momentum in the

software industry. By the configurable mechanism and reusable parts, SPL engineering

allows developers to quickly and easily create multiple products tailored to individual

customers’ requirements. This helps to reduce costs and improve the performance of the

software development process. However, due to the variability inherent to SPL systems,

testing and debugging these systems is very challenging. Although automated debugging

in single-system engineering has been studied in-depth, debugging SPL systems remain

primarily unexplored.

This dissertation aims to shed light on automated debugging SPL systems by focusing on

three tasks: false-passing product detection, variability fault localization, and variability

fault repair. The contributions of the dissertation can be concluded as follows:

First, the dissertation proposed Clap, an approach for detecting false-passing products of

buggy SPL systems. Chapter 3 formulated the false-passing products detection problem.

To solve this problem, Clap introduced six measurable attributes to assess the strength

of the failure indications in the products. These indications refer to the implementation

and test quality ; the stronger the indications, the more likely the product is false-passing .

Our results show that Clap achieves more than 90% Accuracy in detecting false-passing

and true-passing products. Especially, the Precision of Clap in false-passing product

detection is up to 96%.This means, among 10 products predicted as false-passing products

by Clap, there are more than 9 products which are indeed false-passing ones. This

dissertation also evaluates the capability of Clap in mitigating the negative impact of

false-passing products on the FL performance. This dissertation conducted experiments

on two state-of-the-art variability fault localization approaches with the five most popular

SBFL ranking metrics. Interestingly, Clap can significantly improve their performance in

ranking buggy statements by up to 30%. This shows that Clap can greatly mitigate the

negative impact of false-passing products on localizing variability bugs and help developers

find bugs much faster. The tool public is made public at https: // ttrangnguyen.

github. io/ CLAP/ .

15

https://ttrangnguyen.github.io/CLAP/
https://ttrangnguyen.github.io/CLAP/


Second, the dissertation proposed VarCop, an approach for localizing variability faults.

Chapter 4 presented our observations about the visibility/invisibility of this kind of fault

in SPL systems. Chapter 4 formulated the conditions (Buggy PC ) to make variability

fault visible in the products of a buggy SPL system and introduced important properties

for detecting Buggy PC . For a buggy SPL system, VarCop localizes variability bugs

by detecting Buggy PC to narrow the search space. Then, VarCop considers both the

overall and detailed test results to figure out the positions of the faults.

The experimental results show that VarCop significantly outperformed the baselines in

all the studied metrics. For the cases containing a single incorrect statement (single-bug),

our results show that VarCop significantly outperformed S-SBFL, SBFL, and Arrieta et

al. in all 30/30 metrics by 33%, 50%, and 95% in Rank, respectively. Impressively,

VarCop correctly ranked the bugs at the top-3 positions in +65% of the cases. In

addition, VarCop effectively ranked the buggy statements first in about 30% of the

cases, which doubles the corresponding figure of SBFL.

For localizing multiple incorrect statements (multiple-bug), after inspecting the first state-

ment in the ranked list resulted by VarCop, up to 10% of the bugs in a system can be

found, which is 2 times and 10 times better than S-SBFL and SBFL, respectively. Es-

pecially, our results also show that in 22% and 65% of the cases, VarCop effectively

localized at least one buggy statement of a system at top-1 and top-5 positions. From

that, developers can iterate the process of bugs detecting, bugs fixing, and regression

testing to quickly fix all the bugs and assure the quality of SPL systems. The tool public

is made public at https: // ttrangnguyen. github. io/ VARCOP/ .

Third, the dissertation proposed product-based and system-based approaches for automat-

ically repairing variability faults. Chapter 5 introduced the detailed algorithms of these

two approaches, and their enhanced versions with embedded heuristic rules. To improve

fault repair performance, our heuristic rules leverage the intermediate repair information

to guide the process of navigating modification points and selecting suitable modifications.

The experimental results show that the product-based approach is considerably better

than the system-based approach by 12 to 30 times in the number of plausible fixes

and about 20 times in the number of correct fixes. Interestingly, our heuristics could

help to boost the performance of both product-based and system-based approaches by

up to 200%. For instance, by adopting the APR tool Cardumen, ProdBasedbasic and

SysBasedbasic can correctly fix 13 and 0 systems respectively, while ProdBasedenhanced

16

https://ttrangnguyen.github.io/VARCOP/


and SysBasedenhanced correctly fix 40 and 1 systems respectively. Moreover, the re-

pair performance could be negatively impacted by FL tools since the modification points

are selected based on FL results which are often imperfect. To mitigate the impact of the

third-party FL tool, this dissertation assesses the effectiveness of the repair approaches if

correct FL results are provided. In this experiment, the results show that the product-

based approach is better than the system-based approach about 3 times in effectiveness

and 9 times in efficiency. In addition, the proposed heuristic rules help to increase

30-150% the number of correct fixes and decrease 30-70% the number of attempted

modification operations of the corresponding basic approaches. The tool is made public

at https: // github. com/ ttrangnguyen/ SPLRepair .

The limitation of the dissertation: For each proposed approach, the dissertation

carefully analyzes the contribution of each component in the approaches to the whole

performance, as well as the sensitivity of the approaches with the different inputs to

figure out their weaknesses. Some limitations can be mentioned:

• Although the dataset uses the systems widely used in the existing work, this dataset

only contains artificial bugs of Java SPL systems, so this dissertation cannot conclude

the similar results for real-world faults.

• All systems in the benchmark are developed in Java. Therefore, this dissertation

cannot claim that similar results would have been observed in other programming

languages or technologies.

• To guarantee the reliability of SPL systems’ test results, the flaky test problem is

still challenging and has not been addressed.

Future works: From the results achieved in the dissertation, as well as the remaining

limitations, there are some research directions for future work:

• Collecting real-world variability bugs in larger SPL systems to more thoroughly evalu-

ate the techniques. Abal et al. have collected and presented a dataset of 98 real-world

variability bugs in Linux, Apache, BusyBox, and Marlin systems. These bugs are

essential for evaluating the QA tools of SPL systems. However, most of these bugs

are compilation bugs, and they are not provided with test suites. Thus, this dataset

does not fit well with the approaches leveraging testing information like SBFL, Clap,

or VarCop, etc. In practice, collecting real-world bugs is very challenging. Thus,

17

https://github.com/ttrangnguyen/SPLRepair


it requires in-depth analysis and design to collect the bug systematically and auto-

matically. In future work, I plan to investigate the bug-fixing commits which are

often logged and reported. From these commits, the bug-introducing commits can

be traced back and then the buggy versions of the systems can be obtained.

• Extending the experiments with more APR tools. This dissertation evaluated the

variability bug repair performance with jGenProg and Cardumen. These tools can

repair the program at different levels, i.e., statement and expression levels. However,

there are much more APR tools, especially with the development of large language

models and generative AI, multiple new APR tools have been introduced. In the next

study, I plan to conduct more experiments with diverse APR tools to thoroughly

evaluate the contribution of the heuristic rules and extend our conclusions.

• Handling the flaky test problem to improve the quality of the test suites. For the de-

bugging approaches leveraging test results, the quality of the test suites is an essential

factor. The low-quality test suites could result in both coincidental correctness and

flaky test problems. The coincidental correctness leads to under-counting the failed

tests and over-counting the passed tests, negatively impacting the performance of

FL approaches. In this dissertation, Clap has been introduced to address this phe-

nomenon at the product level. Meanwhile, the flaky tests yield both passing and

failing results despite zero changes to the code or test. This unreliability of the test

results provides incorrect indications for FL and APR techniques. Thus diminishing

their performance. In the future, I plan to analyze the symptoms of the flaky tests

and design a specialized approach to detect these tests in SPL systems.

18



List of Publications

NTT1 . Nguyen, Thu-Trang, Kien-Tuan Ngo, Son Nguyen, and Hieu Dinh Vo. “A

variability fault localization approach for software product lines.” IEEE Transac-

tions on Software Engineering 48, no. 10 (2021): ISSN 0098-5589, DOI: https:

//doi.org/10.1109/TSE.2021.3113859, ISI/Q1.

NTT2 . Nguyen, Thu-Trang, and Hieu Dinh Vo. “Detecting Coincidental Correctness

and Mitigating Its Impacts on Localizing Variability Faults.” In 2022 14th Interna-

tional Conference on Knowledge and Systems Engineering (KSE), pp. 1-6. IEEE,

2022.

NTT3 . Nguyen, Thu-Trang, Kien-Tuan Ngo, Son Nguyen, and Hieu Dinh Vo. “Detect-

ing false-passing products and mitigating their impact on variability fault localization

in software product lines.” Information and Software Technology 153 (2023): ISSN

0950-5849, volume 153, DOI: https://doi.org/10.1016/j.infsof.2022.107080,

ISI/Q1.

NTT4 . Nguyen, Thu-Trang, Xiao-Yi Zhang, Paolo Arcaini, Fuyuki Ishikawa, and Hieu

Dinh Vo. “Automated Program Repair for Variability Bugs in Software Product

Line Systems.” Journal of Systems and Software. ISI/Q1 (accepted).

This list contains four publications.

19

https://doi.org/10.1109/TSE.2021.3113859
https://doi.org/10.1109/TSE.2021.3113859
https://doi.org/10.1016/j.infsof.2022.107080

	Abstract
	Introduction
	Background and Literature Review
	False-passing Product Detection
	Variability Fault Localization
	Automated Variability Fault Repair
	Conclusion
	List of Publications

