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Abstract

Software Product Line (SPL) systems are becoming popular and widely employed to de-

velop large industrial projects. However, their inherent variability characteristics pose

extreme challenges for assuring the quality of these systems. Although automated de-

bugging in single-system engineering has been studied in-depth, debugging SPL systems

remains mostly unexplored. In practice, debugging activities in SPL systems are often

performed manually in an ad-hoc manner. This dissertation sheds light on the automated

debugging SPL systems by focusing on three fundamental tasks, including false-passing

product detection, variability fault localization, and variability fault repair.

First, this dissertation aims to improve the reliability of the test results by detecting false-

passing products in SPL systems failed by variability bugs. Given a set of tested products

of an SPL system, the proposed approach, Clap, collects failure indications in failing

products based on their implementation and test quality. For a passing product, Clap

evaluates these indications, and the stronger the indications, the more likely the product

is false-passing . Specifically, the possibility of the product being false-passing is evaluated

based on if it has a large number of statements that are highly suspicious in the failing

products and if its test suite is lower quality compared to the failing products’ test suites.

Second, this dissertation presents VarCop, a novel and effective variability fault localiza-

tion approach. For an SPL system failed by variability bugs, VarCop isolates suspicious

code statements by analyzing the overall test results of the sampled products and their

source code. The isolated suspicious statements are the statements related to the inter-

action among the features that are necessary for the visibility of the bugs in the system.

In VarCop, the suspiciousness of each isolated statement is assessed based on both the

overall test results of the products containing the statement as well as the detailed results

of the test cases executed by the statement in these products.

Third, this dissertation proposes two approaches, product-based and system-based, to repair

the variability bugs in an SPL system to fix the failures of the failing products and not to

break the correct behaviors of the passing products. For the product-based approach, each

failing product is fixed individually, and the obtained patches are then propagated and

validated on the other products of the system. For the system-based approach, all the

products are repaired simultaneously. The patches are generated and validated by all the

sampled products of the system in each repair iteration. Moreover, to improve the repair

performance of both approaches, this dissertation also introduces several heuristic rules for

effectively and efficiently deciding where to fix (navigating modification points) and how

to fix (selecting suitable modifications). These heuristic rules use intermediate validation

results of the repaired programs as feedback to refine the fault localization results and

ii



evaluate the suitability of the modifications before actually applying and validating them

by test execution.

To evaluate the proposed approaches, this dissertation conducted several experiments on

a large public dataset of buggy SPL systems. The experimental results show that Clap

can effectively detect false-passing and true-passing products with an average accuracy

of more than 90%. Especially, the precision of false-passing product detection by Clap

is up to 96%. This means among ten products predicted as false-passing products, more

than nine products are precisely detected.

For variability fault localization, VarCop significantly improves two state-of-the-art tech-

niques by 33% and 50% in ranking the incorrect statements in the systems containing a

single bug each. In about two-thirds of the cases, VarCop correctly ranks the buggy

statements at the top-3 positions in the ranked lists. For the cases containing multiple

bugs, VarCop outperforms the state-of-the-art approaches two times and ten times in

the proportion of bugs localized at the top-1 positions.

Furthermore, for repairing variability faults, the experimental results show that the product-

based approach is around 20 times better than the system-based approach in the number

of correct fixes. Notably, the heuristic rules could improve the performance of both ap-

proaches by increasing of 30-150% the number of correct fixes and decreasing of 30-50%

the number of attempted modification operations.

Keywords: Software product line, variability fault, coincidential correctness, fault local-

ization, automated program repair
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Chapter 1

Introduction

1.1 Problem Statement

Nowadays, Software Product Line (SPL) systems (or Configurable Systems, in general)

are becoming popular and widely employed to develop large industrial projects [7–9].

SPL engineering creates remarkable efficiencies in developing software products. Instead

of developing each software product from scratch, SPL methodology allows one to easily

and quickly construct multiple products from reusable artifacts. This helps to improve

productivity, increase market agility, and reduce development costs. Companies and

institutions such as NASA, Hewlett Packard, General Motors, Boeing, Nokia, and Philips

apply SPL technology with great success to broaden their software portfolio [10].

An SPL system is a product family containing a set of products sharing a common code

base. Each product is identified by the selected features [7]. In other words, a project

adopting the SPL methodology can tailor its functional and nonfunctional properties to

the requirements of users [7, 11]. This has been done using a very large number of options

which are used to control different features [11] additional to the core software. A set of

selections of all the features (configurations) defines a program variant (product). For

example, Linux Kernel supports thousands of features controlled by +12K compile-time

options that can be configured to generate specific kernel variants for billions of scenarios.

Another popular example of an SPL system is WordPress, a powerful tool for building

websites. WordPress allows users to easily customize their own websites by providing a lot

of features implemented as plugins. By 60K plugins 1, multiple variants of websites can

be created, from simple websites such as personal blogs, photo blogs, or business websites

to complex ones like enterprise applications.

Although the variability of SPL system creates many benefits in software developments,

this charateristic challenges Quality Assurance (QA) [3, 12–15]. In comparison with the

traditional single-system engineering (aka. non-configurable system), fault detection, lo-

calization, and repair through testing in SPL systems are more problematic, as a bug can

1https://wordpress.org/plugins/
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Figure 1.1: The proposed debugging process of SPL systems

be variable (so-called variability bug), which can only be exposed under certain combi-

nations of the system features [12, 16]. In particular, there exists a set of features that

must be selected to be on and off together to necessarily reveal the bug. Due to the

presence/absence of the interaction among the features in such set, the buggy statements

behave differently in the products where these features are on and off together or not.

Hence, the incorrect statements can only expose their bugginess in certain products, yet

cannot in others. Specially in an SPL system, variability bugs only cause failures in

certain products, while the others still pass all their tests.

In general, to guarantee the quality of a system during development and before release, de-

velopers need to detect and address software faults. In practice, testing is one of the most

popular and practical techniques employed to determine whether the program exhibits as

expected. If a fault is detected, e.g., a test failed, developers need to localize and repair

it. This debugging process can be done manually or automatically. Several techniques

have been introduced for automated debugging a single-system, such as Tarantula [17] for

localizing faults and GenProg [18] for repairing faults.

To guarantee the quality of an SPL system, a family of software products, the similar

QA process is also adopted [15]. Specifically, for detecting bugs in an SPL system, each

product/variant of the system is constructed and tested against the designed test suite.

However, due to the exponential growth of possible configurations, a subset of products are

systematically selected by sampling techniques such as t-wise [19], statement-coverage [20],

or one-disabled [14]. After that, each sampled product is validated against its test suite.

If the system contains variability bugs, such bugs could cause several products to fail their

tests (failing products), and the others still pass all their tests (passing products).

After the faults are detected (i.e., failed tests), the debugging process includes two main

tasks: fault localization and fault repair. In practice, testing results are often leveraged
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by Fault Localization (FL) approaches to pinpoint the position of the bugs and used

to evaluate the correctness of patches generated by Automated Program Repair (APR)

tools. However, the unreliability of the test results (i.e., coincidental correctness) could

negatively impact the performance of the debugging tools [21]. Thus, the buggy products

which coincidentally passed all their tests (false-passing products) must be detected and

eliminated before leveraging the test results for localizing and repairing faults.

Although automated debugging in single-system engineering has been studied in-depth,

debugging SPL systems still remains mostly unexplored. This dissertation focuses on

automated debugging SPL systems in three main tasks, including detecting false-passing

products, localizing variability faults, and repairing such faults in SPL systems. The

proposed process for automated debugging SPL system is shown in the bottom half of

Figure 1.1. Due to the dynamic nature of SPL systems, with numerous combinations and

interactions among features, it amplifies the difficulties of debugging SPL systems. The

subsequent paragraphs introduce the details of each problem focused in this dissertation.

False-passing product detection. Thorough testing is often required to guarantee

the quality of software program. However, it is often hard, tedious, and time-consuming

to conduct thorough testing in practice. Various bugs could be neglected by the test

suites since it is extremely difficult to cover all the programs’ behaviors. Moreover, there

are kinds of bugs which are challenging to be detected due to their difficulties in infecting

the program states and propagating their incorrectness to the outputs [22]. Consequently,

even when they reached the defects, there are test cases that still obtain correct outputs.

Such test cases are called coincidentally correct/passed tests. Indeed, coincidental cor-

rectness is a prevalent problem in software testing [21], and this phenomenon causes a

severely negative impact on fault localization performance [21, 23, 24].

Similar to testing for non-configurable code, the coincidental correctness phenomenon also

happens in SPL systems and causes difficulties in finding faults in these systems. For a

buggy SPL system, the bugs could be in one or more products. Ideally, if a product

contains bugs (buggy products), the bugs should be revealed by its test suite, i.e., there

should be at least a failed test after testing. However, if the test suite of the product

is ineffective in detecting the bugs, the product’s overall test result would be passing.

For instance, the test suite does not cover the product’s buggy statements or those test

cases could reach the buggy statements but could not propagate the incorrectness to the

outputs, the product still passes all the tests. Concequently, a passing product is indeed
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a buggy product, yet incorrectly considered as passing. That passing product is namely

a false-passing product.

Due to their unreliability of the test results, these false-passing products might negatively

impact the fault localization performance. In particular, the performance of two main

spectrum-based FL strategies, product-based and test case-based, is directly affected.

First, the product-based fault localization techniques [6] evaluate the suspiciousness of a

statement in a buggy SPL system based on the appearance of the statement in failing

and/or passing products. Specially, the key idea to find bugs in an SPL system is that a

statement which is included in more failing products and fewer passing products is more

likely to be buggy than the other statements of the system. Misleadingly counting a buggy

product as a passing product incorrectly decreases the number of failing products and

increases the number of passing products containing the buggy statement. Consequently,

the buggy statement is considered less suspicious than it should be.

Second, the test case-based fault localization techniques [25] measure the suspicious scores

of the statements based on the numbers of failed and/or passed tests executed by them.

Indeed, false-passing products could lead to under-counting the number of failed tests

and over-counting the number of passed tests executed by the buggy statements. The

reason is that false-passing products contain bugs, but there is no failed test. In these

false-passing products, the buggy statements are not executed by any test, or they are

reached by several tests, yet those tests coincidentally passed. Both low coverage test

suite and coincidentally passed tests can cause inaccurate evaluation for the statements.

Variability fault localization. Despite the importance of variability fault localization,

the existing fault localization approaches [4, 6, 25] are not designed for this kind of bugs.

These techniques are specialized for finding bugs in a particular product. For instance,

to isolate the bugs causing failures in multiple products of a single SPL system, the

slice-based methods [25–27] could be used to identify all the failure-related slices for each

product independently of others. Consequently, there are multiple sets of (large numbers

of) isolated statements that need to be examined to find the bugs. This makes the slice-

based methods [25] become impractical in SPL systems.

In addition, the state-of-the-art technique, Spectrum-Based Fault Localization (SBFL) [4,

28–31] can be used to calculate the suspiciousness scores of code statements based on the

test information (i.e., program spectra) of each product of the system separately. For each

product, it produces a ranked list of suspicious statements. As a result, there might be
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multiple ranked lists produced for a single buggy SPL system. From these multiple lists,

developers cannot determine a starting point to diagnose the root causes of the failures.

Hence, it is inefficient to find variability bugs by using SBFL to rank suspicious statements

in multiple variants separately.

Another method to apply SBFL for localizing variability bugs in an SPL system is that

one can treat the whole system as a single program [5]. This means that the mechanism

controlling the presence/absence of the features in the system (e.g., the preprocessor di-

rectives #ifdef) would be considered as the conditional if-then statements during the

FL process. Note that, this dissertation considers the product-based testing [32, 33]. Spe-

cially, each product is tested individually with its own test set. Additionally, a test, which

is designed to test a feature in domain engineering, is concretized to multiple test cases

according to products’ requirements in application engineering [32]. The suspiciousness

score of a statement is measured based on the total numbers of the passed and failed tests

executed by it in all the tested products. By this adaptation of SBFL, a single ranked list

of the statements for a buggy SPL system can be produced according to the suspicious-

ness score of each statement. Meanwhile, the characteristics including the interactions

between system features and the variability of failures among products are also useful to

isolate and localize variability bugs in SPL systems. However, these kinds of important

information are not utilized in the existing approaches.

Automated variability fault repair. After localizing faults, developers still need to

spend a large amount of their time on fixing them [34]. Moreover, with the variability

characteristics of SPL systems, addressing bugs in SPL systems could be much more

complicated. Echeverŕıa et al. [35] conducted an empirical study to evaluate engineers’

behaviors in fixing errors and propagating the fixes to other products in an industrial

SPL system. They showed that fixing SPL systems is very challenging, especially for

large systems. Indeed, in an SPL system, each product is composed of a different set of

features. Due to the interaction of different features, a variability bug in an SPL system

could manifest itself in some products of the system but not in others. To fix variability

bugs, APR approaches need to find patches which not only work for a single product but

also for all the products of the system. In other words, APR approaches need to fix the

incorrect behaviors of all failing products, and do not break the correct behaviors of the

passing products.

To reduce the cost of software maintenance and alleviate the heavy burden of manu-
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ally debugging activities, multiple automated program repair approaches [18, 36–40] have

been proposed in recent decades. These approaches employ different techniques to auto-

matically (i.e., without human intervention) synthesize patches that eliminate program

faults and obtain promising results. However, these approaches focus on fixing bugs in

a single non-configurable system. These approaches cannot be directly applied for fixing

incorrect code statements in SPL systems since they only fix a single product individually

without considering the mutual behaviors among the shared features of the products.

Consequently, the generated patches could be fit for only the product under repair, yet

could not work for the whole SPL system.

In the context of SPL systems, there are several studies attempting to deal with the

variability bugs at different levels, such as model or configuration. For example, Arcaini

et al. [41, 42] attempt to fix bugs in the variability models. Weiss et al. [43, 44] repair

misconfigurations of the SPL systems. However, automated repair variability bugs at the

source code level still needs further investigation.

In summary, SPL systems are widely adopted in industry. A variability bug of the SPL

system could cause severe damage since it could be included in and cause failures for

multiple products of the system. In addition, the inherent variability characteristics of

SPL systems pose extreme challenges for detecting, localizing, and fixing variability bugs.

This dissertation sheds light on the automated debugging buggy SPL systems by focusing

on three fundamental tasks, including false-passing product detection, variability fault

localization, and variability fault repair.

1.2 Objective and Contributions

This dissertation aims to propose approaches for automatically debugging SPL systems

failed by variability bugs. To improve the reliability of the test results, this dissertation

proposes Clap, an approach for detecting false-passing products. Next, this dissertation

presents VarCop, a novel FL approach specialized for variability faults of SPL systems.

Finally, this dissertation introduces two product-based and system-based approaches to

automatically repairing variability faults.

First, this dissertation introduces Clap, an approach for detecting false-passing prod-

ucts of buggy SPL systems. The intuition of the proposed approach is that for a buggy

SPL system, the sampled products can share some common functionalities. If the unex-
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pected behaviors of the functionalities are revealed by the tests in some (failing) products,

the other products having similar functionalities are likely to be caused failures by those

unexpected behaviors. In Clap, false-passing products can be detected based on the

failure indications which are collected by reviewing the implementation and test quality

of the failing products. To evaluate the possibility that a passing product is a false-

passing one, Clap proposes several measurable attributes to assess the strength of these

failure indications in the product. The stronger indications, the more likely the product

is false-passing .

The proposed attributes are belonged to two aspects: product implementation (products’

source code) and test quality (the adequacy and the effectiveness of test suites). The at-

tributes regarding product implementation reflect the possibility that the passing product

contains bugs. Intuitively, if the product has more (suspicious) statements executing the

tests failed in the failing products of the system, the product is more likely to contain

bugs. For the test quality of the product, the test adequacy reflects how its suite covers

the product’s code elements such as statements, branches, or paths [45]. A low-coverage

test suite could be unable to cover the incorrect elements in the buggy product. Hence,

the product with a lower-coverage test suite is more likely to be false-passing . Meanwhile,

the test effectiveness reflects how intensively the test suite verifies the product’s behaviors

and its ability to explore the product’s (in)correctness [46, 47]. The intuition is that if

the product is checked by a test suite which is less effective, its overall test result is less

reliable. Then, the product is more likely to be a false-passing one.

Furthermore, this dissertation discusses strategies to mitigate the impact of false-passing

products on FL results. Since the negative impact is mainly caused by the unreliability

of the test results, this dissertation aims to improve the reliability of the test results by

enhancing the test quality based on the failure indications. In addition, the reliability of

test results could also be improved by disregarding the unreliable test results at either

product-level or test case-level.

Second, this dissertation proposes VarCop, a novel approach for localizing variability

bugs. The key ideas of VarCop is that variability bugs are localized based on (i) the

interaction among the features which are necessary to reveal the bugs, and (ii) the buggi-

ness exposure which is reflected via both overall test results at the product-level and the

detailed test results at the test case-level.

Particularly, for a buggy SPL system, VarCop detects sets of the features which need to
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be selected on/off together to make the system fail by analyzing the overall test results

(i.e., the state of passing all tests or failing at least one test) of the products. This

dissertation calls each of these sets of the feature selections a Buggy Partial Configuration

(Buggy PC). Then, VarCop analyzes the interaction among the features in these Buggy

PCs to isolate the statements which are suspicious.

InVarCop, the suspiciousness of each isolated statement is assessed based on two criteria.

The first criterion is based on the overall test results of the products containing the

statement. By this criterion, the more failing products and the fewer passing products

where the statement appears, the more suspicious the statement is. Meanwhile, the second

one is assessed based on the suspiciousness of the statement in the failing products which

contain it. Specially, in each failing product, the statement’s suspiciousness is measured

based on the detailed results of the products’ test cases. The idea is that if the statement

is more suspicious in the failing products based on their detailed test results, the statement

is also more likely to be buggy in the whole system.

Third, this dissertation proposes two approaches, product-based and system-based, for au-

tomatically repairing variability faults of the SPL systems. For the product-based

approach (ProdBasedbasic), each failing product of the system is repaired individually,

and then the obtained patches, which cause the product under repair to pass all its tests,

are propagated and validated on the other products of the system. For the system-based

approach (SysBasedbasic), instead of repairing one individual product at a time, all the

products are considered for repairing simultaneously. Specifically, the patches are gener-

ated and then validated by all the sampled products of the system in each repair iteration.

For both approaches, the valid patches are the patches causing all the available tests of

all the sampled products of the system to pass.

Furthermore, this dissertation introduces several heuristic rules for improving the perfor-

mance of the two approaches in repairing buggy SPL systems. These heuristic rules are

started from the observation that, in order to effectively and efficiently fix a bug, an APR

tool must correctly decide (i) where to fix (navigating modification points) and (ii) how to

fix (selecting suitable modifications). The heuristic rules focus on enhancing the accuracy

of these tasks by leveraging intermediate validation results of the repair process.

For navigating modification points, APR tools [38, 48] often utilize the suspiciousness

scores, which refer to the probability of the code elements to be faulty. These scores

are often calculated once for all before the repair process by FL techniques such as
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SBFL [25, 31]. However, a lot of additional information can be obtained during the

repairing process, such as the modified programs’ validation results. Such information

can provide valuable feedback for continuously refining the navigation of the modification

points [49]. Therefore, in this work, besides suspiciousness scores, the fixing scores of

the modification points, which refer to the ability to fix the program by modifying the

source code of the corresponding points, are used for navigating modification points in

each repair iteration. The fixing scores are continuously measured and updated according

to the intermediate validation results of the modified programs. The intuition is that if

modifying the source code at a modification point mp causes (some of) the initial failed

test(s) to be passed, mp could be the correct position of the fault or have relations with the

fault. Otherwise, modifying its source code cannot change the results of the failed tests.

The modification point with a high fixing score and high suspiciousness score should be

prioritized to attempt in each subsequent repair iteration.

After a modification point is selected, APR tools generate and select suitable modifica-

tions for that point and evaluate them by executing tests [36, 38, 50]. This dynamic

validation is time-consuming and costs a large amount of resources. In order to miti-

gate the wasted time of validating incorrect modifications, this dissertation introduces

modification suitability measurement for lightweight evaluating and quickly eliminating

unsuitable modifications. The suitability of a modification at position mp is evaluated

by the similarity of that modification with the original source code and with the previous

attempted modifications at mp. The intuition is that the correct modification at mp is

often similar to its original code and the other successful modifications at this point, while

the modifications similar to the failed modifications are often incorrect. Thus, the more

similar a modification is to the original code and to the successful modifications, and the

less similar it is to the failed modifications, then the more suitable that modification is

for attempting at mp.

These heuristic rules are embedded on the product-based and system-based approaches,

and the enhanced versions are called ProdBasedenhanced and SysBasedenhanced.

The research methodology of the dissertation is the combination of qualitative research

and quantitative research:

• Qualitative research includes: (i) Analyzing the concepts, ideas, methodologies, and

techniques from prior studies; (ii) identifying strengths, weaknesses, and challenges

of these approaches; (iii) enhancing, integrating, and proposing novel solutions for
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addressing the problems.

• Quantitative research includes: (i) Investigating available datasets, (ii) conducting

experiments, (iii) validating the effectiveness of proposed approaches, and (iv) pub-

lishing research findings for peer validation within the academic community.

Scope of the Dissertation: The dissertation focuses on addressing the problem of au-

tomated debugging buggy SPL systems, which contain variability bugs. Specifically, this

dissertation focuses on three tasks, including false-passing product detection, variability

fault localization, and variability fault repair.

In summary, this dissertation makes the following main contributions:

• The formulation of the false-passing product detection problem in SPL systems and

a large benchmark for evaluating false-passing product detection techniques.

• Clap: an effective approach to detect false-passing products in SPL systems and

mitigate their negative impact on variability fault localization performance. Clap’s

implementation can be found at: https: // ttrangnguyen. github. io/ CLAP/ .

• A formulation of Buggy Partial Configuration (Buggy PC) where the interaction

among the features in the Buggy PC is the root cause of the failures caused by

variability bugs in SPL systems.

• VarCop: A novel effective approach/tool to localize variability bugs in SPL systems.

VarCop’s implementation can be found at: https: // ttrangnguyen. github.

io/ VARCOP/ .

• Heuristic rules for navigating modification points and selecting suitable modifications

to improve the performance of APR tools.

• The product-based and system-based approaches for repairing variability bugs in the

source code of SPL systems. The implementation the proposed approaches can be

found at: https: // github. com/ ttrangnguyen/ SPLRepair .

• Extensive experimental evaluations showing the performance of the approaches.
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1.3 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 introduces the back-

ground and reviews the related studies. The proposed approach for detecting false-passing

products is introduced in Chapter 3. The proposed approach for localizing variability

faults is described in Chapter 4. Chapter 5 shows the product-based and system-based

approaches for repairing variability faults in SPL systems. Finally, Chapter 6 summarizes

and concludes this dissertation.
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Chapter 2

Background and Literature Review
This chapter introduces background and the concepts which are used in the following

sections of the dissertation. First, this chapter introduces the key concepts of the SPL

systems, the main testing methodologies, FL and APR techniques. Next, this chapter

reviews the related works. Finally, this chapter introduces the popular benchmarks for

evaluating testing and debugging approaches of the SPL systems.

2.1 Background

2.1.1 Software Product Line

Traditional single-software engineering targets developing a single product. For each

individual software product, developers collect requirements, design, and implement the

product. Meanwhile, for SPL engineering, instead of analyzing and implementing a single

product each, developers target a variety of products that are similar but not identical [1].

For this purpose, the development process of SPL systems considers two important factors:

variability and reuse. Figure 2.1 illustrates the overview process of developing an SPL

system. There are two main processes: Domain engineering and Application engineering.

Domain engineering analyzes the domain of a product line and develops reusable artifacts.

This process does not implement any specific product, yet it develops features that can be

used in multiple products. Features are the solutions for the requirements and problems

of the stakeholders.

Application engineering focuses on developing a specific product tailored to the needs of

a particular customer. This process is similar to the development process of traditional

single-system, but reuses features from domain engineering. For a customer’s require-

ments, the suitable features of the system are selected and combined to derive a product.

Overall, an SPL is a product family that consists of a set of products sharing a common

code base. These products distinguish from the others in terms of their features [1].

Definition 2.1 (Software Product Line System). A Software Product Line System
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Figure 2.1: Overview of an engineering process for software product lines[1]

(SPL) S is a 3-tuple S = ⟨S,F, φ⟩, where:

• S is a set of code statements that are used to implement S,

• F is a set of the features in the system. A feature selection of a feature f ∈ F is the

state of being either enabled (on) or disabled (off) (f = T/F for short), and

• φ : F → 2S is the feature implementation function. For a feature f ∈ F, φ(f) ⊂ S
refers to the implementation of f in S, and φ(f) is included in the products where

f is on.

Feature is one of the fundamental interests of SPL engineering. However, the concept of

feature is complex and challenging to define precisely. On the one hand, features specify

the intentions of the stakeholders of a SPL system. On the other hand, features are used

to structure and reuse software artifacts. Thus, there are different variants of feature

definition. Following the definition of Apel at al. [1], a feature is a characteristic or end-

user-visible behavior of a software system. Features are used in SPL engineering to specify

commonalities and differences of the products of an SPL system.

For an SPL system, the valid combination of features are defined by a feature model.

A feature model of an SPL system has a hierarchical structure which documents all the

features of an SPL system and their relationships.

Figure 2.2 shows the feature model of Elevator system. This system is implemented by

five features, F = {Base,Weight,Empty,TwoThirdsFull,Overloaded}. In Elevator, Base
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Figure 2.2: An example of feature model of Elevator system

is the mandatory feature implementing the basic functionalities of the system, while the

others are optional. In addition, TwoThirdsFull is expected to limit the load not to

exceed 2/3 of the elevator’s capacity, while Overloaded ensures the maximum load is the

Elevator’s capacity. Specifically, TwoThirdsFull will block the Elevator when its weight is

greater than 2/3 of the allowed capacity. Meanwhile, Overloaded will block the Elevator

if its weight exceeds the allowed capacity. Both TwoThirdsFull and Overloaded need

information about the total weights of people/things inside the elevator cabin, which is

recorded by feature Weight. Thus, in an Elevator variant where TwoThirdsFull and/or

Overloaded are enabled, Weight must also be enabled as specified by the constraints in

the feature model.

A set of the selections of all the features in F defines a configuration. A configuration

which satisfies all the constraints defined by the feature model is a valid configuration.

Any non-empty subset of a configuration is called a partial configuration. A configura-

tion specifies a single product. For example, configuration c1 = {Empty = F,Weight =

T, TwoThirdsFull = F,Overloaded = F} specifies product p1. A product is the compo-

sition of the implementation of all the enabled features, e.g., p1 is composed of φ(Base)

and φ(Weight).

The sets of all the possible valid configurations and all the corresponding products of S

are denoted by C and P, respectively (|C| = |P|). In practice, a subset of C, C (the

corresponding products P ⊂ P), is sampled for testing and finding bugs. Unlike non-

configurable code, bugs in SPL systems can be variable and only cause the failures in

certain products.

Definition 2.2 (Variability Fault). Given a buggy SPL systemS and a set of products

of the system, P , which is sampled for testing, a variability bug is an incorrect code
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Table 2.1: The sampled products and their overall test results

P C Base Empty Weight TwoThirdsFull Overloaded

p1 c1 T F T F F

p2 c2 T T T F F

p3 c3 T T F F F

p4 c4 T F T T F

p5 c5 T F T T T

p6 c6 T T T F T

p7 c7 T F T F T

P and C are the sampled sets of products and configurations.

p6 and p7 fail at least one test (failing products). Other products pass

all their tests (passing products).

statement of S that causes the unexpected behaviors (failures) in a set of products which

is a non-empty strict subset of P .

In other words, SPL system S contains variability bugs if and only if P is categorized

into two separate non-empty sets based on their test results: the passing products PP and

the failing products PF corresponding to the passing configurations CP and the failing

configurations CF , respectively. Every product in PP passes all its tests, while each

product in PF fails at least one test. Note that PP ∪ PF = P and CP ∪ CF = C.

Definition 2.3 (Passing product). Given a product p and its test suite T , p is a

passing product if ∀t ∈ T , t is a passed test.

Definition 2.4 (Failing product). Given a product p and its test suite T , p is a failing

product if ∃t ∈ T , t is a failed test.

Listing 2.1: An example of variability bug in Elevator System

1 int maxWeight = 2000, weight = 0;
2

3 //#ifdef Empty
4 void empty(){ persons.clear();}
5 //#endif
6 void enter(Person p){
7 persons.add(p);
8 //#ifdef Weight
9 weight += p.getWeight();

10 //#endif
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11 }
12 void leave(Person p){
13 persons.remove(p);
14 //#ifdef Weight
15 weight -= p.getWeight();
16 //#endif
17 }
18 ElevState stopAtAFloor(int floorID){
19 ElevState state = Elev.openDoors;
20 boolean block = false;
21 for (Person p: new ArrayList<Person>(persons))
22 if (p.getDestination() == floorID)
23 leave(p);
24 for (Person p : waiting) enter(p);
25 //#ifdef TwoThirdsFull
26 if (weight >= maxWeight*2/3)
27 block = true;
28 //#endif
29 //#ifdef Overloaded
30 if(block == false){
31 if (weight == maxWeight )
32 //Patch: weight >= maxWeight
33 block = true;
34 }
35 //#endif
36 if (block == true)
37 return Elev.blockDoors;
38 return Elev.closeDoors;
39 }

Listing 2.1 shows a simplified variability bug in Elevator system [5]. The overall test

results of the sampled products are shown in Table 2.1. In Listing 2.1, the bug (incorrect

statement) at line 31 causes the failures in products p6 and p7.

In this system, the implementation of Overloaded (lines 30–34) does not behave as spec-

ified. If the total loaded weight (weight) of the elevator is tracked, then instead of

blocking the elevator when weight exceeds its capacity (weight >= maxWeight), its ac-

tual implementation blocks the elevator only when weight is equal to maxWeight (line

31). Consequently, if Weight and Overloaded are on (and TwoThirdsFull is off), even

the total loaded weight is greater than the elevator’s capacity, then (block==false) the

elevator still dangerously works without blocking the doors (lines 37–39).

This bug (line 31) is variable (variability bug). It is revealed not in all the sampled

products, but only in p6 and p7 (Table 2.1) due to the interaction among Weight, Over-

loaded, and TwoThirdsFull. Specially, the behavior of Overloaded which sets the value

of block at line 33 is interfered by TwoThirdsFull when both of them are on (lines 27

and 30). Moreover, the incorrect condition at line 31 can be exposed only when Weight

= T, TwoThirdsFull=F, and Overloaded = T in p6 and p7. In Table 2.1, PP = {p1, p2,
p3, p4, p5}, and PF = {p6, p7}.
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Figure 2.3: SPL testing interest: actual test of products [2]

2.1.2 Testing Software Product Lines

In an SPL system, features are fundamental building blocks for specifying products. All

possible products of the system are defined by the feature model, which represents the

dependencies and relationships among features. Guaranteeing the quality of the SPL

system means assuring not only every feature of the system works as expected but also

that the combinations of the features will work correctly as well [2].

Figure 2.3 shows the testing procedure on end-product functionality. The domain engi-

neering defines features, feature model, and testing asserts (e.g., test cases, test scenarios),

etc. In the application engineering, a concrete product is created by selecting a specific

set of features. When a product is instantiated, test cases are selected and concretized

according to the product’s requirements. After that, each product is validated against its

own selected test suite.
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Figure 2.4: Example of sampling algorithms [3]

However, due to the variability inherent to the SPL systems, developers often need to

consider a vast number of configurations when they execute tests or perform static anal-

ysis [3]. As the configuration space often explodes exponentially with a large number

of configuration options, it is infeasible to test and analyze every individual product of

a real-world SPL system. For example, with +12K compile-time configuration options,

the Linux Kernel can be generated to billions of variants. Thus, testing all the possible

variants/products of the Linux Kernel is impossible.

In practice, to systematically perform QA for an SPL system, products are often selected

according to several configuration selection strategies. The most popular strategies include

the sampling algorithms which achieve feature interaction coverage such as combinatorial

interaction testing [51–53], one-enabled [3], one-disabled [14], most-enabled-disabled [54],

or statement-coverage [33], etc to reduce the number of configurations. Each sampling

algorithm is explained by using the example snippet in Figure 2.4.

The combinatorial interaction testing or t-wise algorithm [51–53] aims to systematically

reduce the number of tested products while maximizing the coverage of possible inter-

actions between system features. The intuition is that various failures of SPL systems

are caused by the undesirable interactions among the features. Thus, the testing process

should cover as many feature interactions as possible to increase the detected faults.

In particular, pair-wise (t = 2) checks all pairs of configuration options. For three features

A, B, and C in Figure 2.4, there are a total of 12 pairs of configuration options such as

(A, B), (!A, B), (A, !B), (!A, !B), etc. To cover all of these pairs of configuration options,

this sampling algorithm selects four configurations as shown in Figure 2.4. Considering
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options A and B, there is a configuration where both options are disabled (config-1), two

alternative configurations where only one of them is enabled (config-2 and config-3), and

another configuration where both configuration options are enabled (config-4). The same

situation occurs for configuration options A and C, and B and C.

Similarly, for t with the other integer values such as three-wise (t = 3) selects configura-

tions covering all the possible combinations of any three features and four-wise (t = 4)

selects configurations covering all the possible combinations of any four features of the

system. In general, the t − wise algorithm selects a minimal set of configurations that

covers all t combinations of features. The larger t, the larger the size of the sample set.

The statement-coverage algorithm [33] selects configurations where each optional feature

is enabled at least once. In other words, this algorithm aims to select configurations such

that each statement (implementing features) of the system is validated at least once in a

product. For example, by enabling all configuration options A, B, and C in config-1, code

blocks code 1, code 2, and code 4 are selected. However, by only this configuration, the

code block code 3 has not been selected. With config-2, A and C are enabled and B is

disabled, the code blocks code 1, code 3, and code 4 are selected. Thus, to guarantee

that each code block is tested at least once, both config-1 and config-2 are selected by the

statement-coverage algorithm.

The most-enabled-disabled algorithm [54] checks two samples independently. One config-

uration aims to enable as many options as possible. In contrast, the other aims to disable

as many options as possible. For example, if there are no constraints among configuration

options, this algorithm selects to test two configurations as shown in Figure 2.4. Config-1

enables all three options, and config-2 disables all of them.

The one-disabled algorithm [14] selects samples by disabling one configuration option

at a time. Meanwhile, the one-enabled algorithm [3] selects samples by enabling one

configuration option at a time. As shown in Figure 2.4, the one-disabled algorithm disables

A in config-1, B in config-2, and C in config-3. In contrast, the one-enabled algorithm

alternatively enables one of these configuration options in each configuration.

Moreover, several approaches about configuration prioritization [15, 55, 56] have been

proposed to improve the testing productivity. For example, Al-Hajjiaji et al. [55, 56]

select the configurations for testing based on the similarity of the configurations with

the previously selected ones. Nguyen et al. [15] prioritize configurations based on their

number of potential bugs, which are measured by analyzing the feature interactions.
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Figure 2.5: Program spectrum of a program with n elements and m test cases

2.1.3 Fault Localization

Although testing could help discover faults due to the observed erroneous behaviors,

finding and fixing them is an entirely different matter. Fault localization, identifying

the locations of program faults, is critical in program debugging, yet widely recognized

as a tedious, time-consuming, and prohibitively expensive activity [25]. For effective and

efficient fault finding, multiple FL approaches for partially or fully automated figuring out

the positions of the faults have been proposed. These FL approaches are often categorized

into eight groups according to their techniques, including slice-based, spectrum-based,

statistics-based, program state-based, machine learning-based, data mining-based, model-

based, and miscellaneous techniques.

Amongst these techniques, Spectrum-Based Fault Localization (SBFL) is considered the

most prominent due to its lightweight, efficiency, and effectiveness [57]. Specifically, SBFL

is a dynamic program analysis technique that leverages the testing information (i.e., test

results and code coverage) for measuring the suspiciousness scores of the code components

such as statements, basic blocks, methods, etc. The intuition is that, in a program, the

more failed tests and the fewer passed tests executed by a code component, the more

suspicious the code component is. The component with the higher suspiciousness score is

more likely to be buggy.

In particular, an SBFL technique first runs tests on the target program and records the

program spectrum, which are the run-time profiles about which program components are

executed by each test. Then, the suspiciousness scores of program components are assessed

based on the recorded program spectrum and the test results (i.e., passing or failing).

There are various SBFL formulae have been proposed for calculating suspiciousness scores.

The program spectrum of a program having n components and tested by m test cases are
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Table 2.2: Several popular SBFL formulae [4]

SBFL Formulae

Tarantula [17] S(c) =

ef
ef+nf

ef
ef+nf

+
ep

ep+np

Ochiai [58] S(c) =
ef√

(ef+ep)(ef+nf )

Op2 [29] S(c) = ef − ep
ep+np+1

Barinel [59] S(c) = 1− ep
ep+ef

Dstar2 [60] S(c) =
(ef )

2

ep+nf

shown in Figure 2.5. Particularly, the program spectrum of this program is a matrix A

size n×m where each column specifies the execution profile of a test case, and each row

indicates whether a component is executed by tests. For instance, aij specifies whether

component ci is executed by test tj . aij = 1 means ci is executed by tj , and aij = 0

otherwise. The pass/fail information of tests is stored in a vector r, the result/error

vector, where rj signifies whether test tj has passed (rj = 0) or failed (rj = 1).

The pair ⟨A, r⟩ is the input for SBFL, which measures the statistical similarity coefficient

between the vector r and the activity profile of each component ci, i.e., vector A[i]. There

are various SBFL formulae have been proposed for calculating such similarity coefficients,

such as Tarantula [17], Ochiai [58], Op2 [29], Barinel [59], and Dstar2 [60]. Their formulae

are listed in Table 2.2, where ef and ep are the numbers of failed and passed tests executing

the program component c, while nf and np are the numbers of failed and passed tests

that do not execute this component.

Figure 2.6 illustrates an example of program spectrum and the FL results of two SBFL

metrics, Tarantula and Ochiai. As seen, the target program is mid, which finds the middle

value among three inputs. Statement s7 is a buggy statement that incorrectly assigns the

value of y to m instead of assigning the value of x to m. This function is tested by 6 test

cases in which one test failed and the others passed. By both Tarantula and Ochiai, the

buggy statement s7 has the highest suspiciousness score, which should be prioritized to

investigate by developers to find and fix the bug.
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Figure 2.6: Example of program spectrum and FL results by Tarantula and Ochiai

Figure 2.7: Standard steps in the pipeline of the test-suite-based program repair

2.1.4 Automated Program Repair

To reduce the cost of software maintenance, multiple APR techniques have been proposed

in the past. The most popular APR approach is test-suite-based program repair [40, 61,

62], such as GenProg [18], Nopol [37], and Cardumen [63], which use test suites as the

specification of the program’s expected behaviors. For repairing a program failed by at

least one test, these APR approaches attempt to generate candidate patches. Then, the

available test cases are used to check whether the generated patches can fix the program.

In practice, the test-suite-based program repair tools are commonly implemented in three

steps, as shown in Figure 2.7. First, code elements of the program under repair are

selected as the positions for attempting to fix by the modification point navigation

step. In this step, to narrow down the search space, an FL technique can be applied

to detect and rank suspicious code elements according to their suspiciousness. Then,

the probability of being selected of the code elements is often decided based on their

suspiciousness scores. Next, the patch generation step generates candidate patches for

the selected code positions. A patch can be generated by multiple different techniques.

22



For example, GenProg [18] generates patches by using existing code from the program

under repair, or Nopol [37] collects running time information to build repair constraints

and then uses a constraint solver to synthesize patches. Finally, a patch is validated by

the test suites of the program to check whether the patched program meets the expected

behaviors (patch validation).

The concepts of APR including Modification point (Definition 2.5), Modification operator

(Definition 2.6), Modification operation (Definition 2.7), and Candidate patch (Defini-

tion 2.8) used in this dissertation are formally defined as follows:

Definition 2.5 (Modification point). A modification point mp = (pos , co) is a code

element that can be modified to repair the buggy program, in which pos is the position of

the code element in the program under repair and co is its associated (original) code.

Listing 2.2: An example of buggy code snippet

1 public int getGrade(int matrNr) throws ExamDataBaseException{
2 int i = getIndex(matrNr);
3 if(students[++i] != null && !students[i].backedOut){
4 //Patch: if(students[i] != null && !students[i].backedOut)
5 return pointsToGrade(students[i].points, 0);
6 }
7 throw new ExamDataBaseException("Matriculation number not found");
8 }

For example, in GenProg [18, 36], which repairs the program at the statement level, a mod-

ification point is a suspicious statement in the program. For instance, with the buggy code

in Listing 2.2, a modification point of GenProg could be any suspicious statement in this

code, such as mp = (s3, if(students[++i] != null && !students[i].backedOut)).

Instead, in Cardumen [63], which fixes the program at the expression level, a modification

point is an expression in a suspicious statement. For instance, in the suspicious statement

s3 in Listing 2.2, each of its expressions could be a modification point in Cardumen, such

as mp = (s3, students[++i] != null).

Definition 2.6 (Modification operator). A modification operator op is the action of

transforming a code element into another. In this dissertation, the considered operators

are op ∈ {rem, rep, ins bef , ins aft}, where rem, rep, ins bef , and ins aft are remove,

replace, insert before, and insert after operators, respectively.
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For a modification point mp, a modification operator can be applied to transform the

source code at this point. Namely, the operator rem removes code at mp, the operator

rep replaces the code atmp with a new code, the operator ins bef inserts a new code before

mp, while ins aft inserts a new code after mp. To generate the new code for applying

insert/replace operators, several approaches [18, 38, 50, 63] leverage the ingredients from

the program under repair or from the other projects. Instead, other approaches synthesize

new code without using ingredients, such as jMutRepair [36] or Nopol [37].

Definition 2.7 (Modification operation). Given a modification point mp = (pos , co),

a modification operation d = op(mp, cn) is the transformation from the original code co

to a new code by applying the repair operator op with the code cn at the position pos. In

particular, the transformation of each modification operator is defined as follows:

• rem(mp, cn) = (pos , “”),

• rep(mp, cn) = (pos , cn),

• ins bef (mp, cn) = (pos , cn + co), and

• ins aft(mp, cn) = (pos , co + cn).

Definition 2.8 (Candidate patch). A candidate patch (or patch for short) is the

transformation result of a list of one or more modification operations.

In general, a patch could consist of one or more modification operations since a buggy

program could be fixed by modifying one or several code statements. A valid patch is

a candidate patch which passes all the available test cases of the program. Originally,

the number of valid patches was a common metric to measure the performance of APR

tools [18, 64]. However, a test suite is often weak and inadequate [65–68], and it cannot

cover all the behaviors of the program. Therefore, despite passing all the available test

cases, a patch could still break other behaviors or introduce new faults, which are not cov-

ered by the given test suite [67]. Such a valid patch is then referred to as a plausible patch

or test-adequate patch, which needs to be further manually investigated by developers to

ensure its correctness.
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2.2 Literature Review

This section comprehensively reviews studies investigating the inherent characteristics

and critical problems of SPL systems, i.e., feature interaction and variability bugs. This

dissertation also critically examines the studies about QA for SPL systems with an em-

phasis on methodologies and best practices to ensure the reliability and performance of

this kind of system. Moreover, testing is a common and effective method for assuring the

quality of the systems and the test results could provide valuable guidance for the debug-

ging process. Thus, test suite quality is an important problem. This section examines

the studies that measure the effectiveness of the test suites and improve the test suite

reliability by addressing the coincidental correctness problem. Finally, this section ana-

lyzes the existing approaches for localizing and repairing bugs in both non-configurable

and configurable systems.

Feature interaction in SPL system. There are a large number of approaches to

investigate feature interactions as the influences of the features on the others’ behaviors

in an unexpected way [12, 69]. Depending on the level of granularity and purposes,

various approaches were proposed to detect feature interactions. In black-box fashion,

Siegmund et al. [70] detects interactions to predict system performance by analyzing the

influences of the selected features on the others’ non-functional properties. Based on the

specifications, model checking is also used to check whether the combined features hold

the specified properties [71, 72]. In several studies [15, 73, 74], interactions are detected

by analyzing code. Nguyen et al. [15] detect interactions based on their shared program

entities. In other studies [73, 74], they leverage control and data flow analyses to identify

the interactions among features. iGen [75] employs an iterative method that runs the

system, captures coverage data, processes data to infer interactions, and then creates new

products to further refine interactions in the next iteration.

Variability faults. Variability faults are complex and difficult to be detected by both

humans and tools because they involve multiple system features and only be revealed

in certain products [12, 14, 76, 77]. Abal et al. [14, 76] analyzed the real variability

bugs in several large highly-configurable systems such as Linux kernel and Busybox to

understand the complexity and the nature of this kind of bugs. In order to make a

white-box understanding of interaction faults, Garvin et al. [12] presented the criteria for

interaction faults to be present in systems. Their criteria are about the statements whose

(non-) execution is necessary for the failure to be exposed/masked.
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Quality assurance for SPL system. Configurable systems create a mechanism to flex-

ibly tailor products to customers’ needs. Unfortunately, the large number of features, as

well as their mutual interactions make their quality become notoriously difficult to assure.

There are various studies about variability-aware analysis [78, 79] for the purpose of type

checking [80, 81], testing [82, 83], control/data flow analysis[81, 84], and performance

prediction [85, 86].

In addition, testing an SPL system [87, 88] is a complex and costly task since the va-

riety of the interactions of system features and a large number of derived products. A

large number of studies have been conducted, and various testing strategies have been

proposed. To efficiently assure software quality, various sampling algorithms have been

introduced [19, 20, 89–93]. In addition, to improve the efficiency of the testing pro-

cess, several approaches about configuration selection [2, 94] and configuration prioritiza-

tion [15, 55, 95] have also been proposed. Several other approaches are aimed for testing

for configurable systems [94, 96].

Test suite effectiveness measurement. Various metrics have been proposed to mea-

sure the quality of the test suites. Specially, code coverage is one of the most popular

metrics, which measures the percentage of code elements (e.g., statements, branches, deci-

sions, etc.) covered by test suites [97]. Also, Perez et al. [98] proposed Density-Diversity-

Uniqueness (DDU) metric which aims at measuring the effectiveness of the suites in term

of applying SBFL to detect faults in the corresponding source code. Gonzalez-Sanchez

et al. [99] employed information gain algorithm to predict the efficiency of the test suites

based on the system’s size, the coverage density, and the uniform of coverage distribution.

Baudry et al. [100] proposed a test criterion based on the Dynamic Basic Block, the test

data (traces), and the software control structure to evaluate the fault localizing capacity

of the test cases. Besides, mutation testing techniques [101, 102] are also proposed to

evaluate the effectiveness of the test suites in detecting mutated faults.

Coincidental correctness detection and impact mitigation. Coincidental correct-

ness has been proven as a prevalent problem in software testing [21]. Also, practical

experiments have been conducted to demonstrate that this problem adversely affects FL

performance [21, 103, 104]. Many techniques have been proposed to detect coincidentally

passed tests [21, 105–107], which execute the faults, yet produce correct outputs. After

that, they cleansed the test suites from these detected unreliable tests to enhance FL

performance. Bandyopadhyay et al. [108] proposed an approach to predict and weight
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coincidentally passed tests to calculate the suspiciousness scores. In general, these ap-

proaches investigate each individual passed test case to detect coincidental correctness

and boost FL performance in non-configurable code.

Fault localization. There are various approaches proposed to identify the locations of

faults in programs [25, 109–113]. Program slicing [26, 27] is used in many studies to

reduce the search space while localizing bugs by deleting irrelevant parts in code. Both

static slicing [109, 110] and dynamic slicing [111, 114] are used to aid programmers in

finding defects. In addition, by SBFL, a program spectrum, which records the execution

information of a program, can be used to localize bugs. This idea was suggested by

Collofello and Cousins [115]. To calculate suspiciousness, in early studies [116, 117], only

information of failed tests was used. In later studies [31, 118, 119], which are better, both

of the passed and failed tests are utilized. Moreover, several studies [120, 121] have shown

that the FL performance is improved by combining SBFL technique with slicing methods.

Automated program repair. In recent years, APR has attracted a lot of attention

from both industry and academia. Various APR techniques have been proposed. Goues et

al. [122] divided the APR techniques into three main groups: heuristic-based [18, 50, 123–

126], constraint-based [37, 127], and learning-based repair [38, 39, 128–131].

In heuristic-based repair direction, a search strategy such as random search [123], genetic

programming [18], or multi-objective genetic programming [124] is leveraged to guide

the search of valid patches. For example, GenProg [18] is one of the most well-known

program repair tools which uses a genetic programming technique to guide the patch gen-

eration process. This tool has been demonstrated to be able to fix real bugs in non-trivial

programs. However, since the genetic algorithm needs to measure fitness values and dis-

tinguish better and worse patches, one general problem of APR tools using this technique

is that they are computationally expensive. Besides, Qi et al. [123] introduce RSRepair,

in which a patch is generated by a random-search technique which is far less complicated

compared to a genetic algorithm. Their experiments have shown that RSRepair is more

efficient and effective than GenProg. Recently, various advanced APR tools in this search-

based direction have been introduced, and they have shown their high performance, such

as SimFix [125], SSFix [126], Arja [124], and TransplantFix [50].

In constraint-based repair direction, repair constraints that the patched code should sat-

isfy, are constructed. The patches are generated by solving such constraints. For exam-

ple, SemFix [127] is a representative constraint-based APR. This tool generates repair

27



constraints based on the expression in the buggy location using (controlled) symbolic

execution program synthesis. In another research, Xuan et al. [37] introduced Nopol,

which collects runtime information, including variable and actual values, to construct

constraints and then uses a Satisfiability Modulo Theories (SMT) solver to synthesize

patches for fixing buggy conditional statements.

In learning-based repair direction, the APR tools leverage machine learning/deep learning

algorithms to learn from a large corpus of existing (correct) patches and generate candi-

date patches for a newly encountered program. For instance, DeepRepair [128] uses code

similarities, which are reasoned by a deep learning model, to select and transform in-

gredients. In addition, DEAR [38] adopts tree-based Long Short-Term Memory (LSTM)

models and uses a divide-and-conquer strategy to learn proper code transformations. It

can generate fixes by modifying one or several statements at the same time.

For repairing buggy SPL systems, Arcaini et al. [42] have proposed a solution to repair

variability models to prevent incorrect configurations from being generated in the solution

space. Besides, the wrong configurations, which violate the model constraints, are solved

and fixed by Xiong et al. [44]. In that work, they use a constraint solver to automatically

generate range fixes and ensure the desired properties of the generated fixes. Furthermore,

Echeverŕıa et al. [35] realize the importance and complexity of bug-fixing in the SPL

system. They conducted an empirical study to analyze the patches of industrial SPL

systems, which were manually fixed by engineers. This study also confirms that fixing

variability bugs is challenging, especially propagating the fix when the source of the bug

is the interaction between features.

2.3 Benchmarks for Software Product Lines

For evaluating QA approaches of the SPL systems, Abal et al. [76] and Mordahl et al. [132]

constructed and published the datasets of real-world variability bugs. Their datasets con-

tain 98 variability bugs collected from bug-fixing commits in the Linux, Apache, BusyBox,

and Marlin repositories. Importantly, to support researchers to understand the bugs and

efficiently use the bugs for developing and evaluating their QA tools, Abal et al. [76] man-

ually analyze the bugs to create self-contained simplified versions and simplified patches.

However, these bugs are not provided along with corresponding test suites, and most of

these bugs are compile-time bugs.
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In addition, Arrieta et al. [6] also constructed a set of artificial bugs to evaluate their

approach to localizing bugs in SPL systems. They selected nine SPL systems of different

sizes; seven are taken from SPLOT Repository [133] and two real-world systems, i.e.,

the Drupal framework and Unmanned Aerial Vehicle. However, due to the unavailability

of the feature models, source code, and test cases, as well as the time-consuming test

execution process, they resorted to a fault simulator in eight of the systems (where no

code nor test cases were available) except for the Unmanned Aerial Vehicle.

For the simulation of faults, they developed a fault generator that receives a feature model

as an input and returns a random list of faulty feature sets as an output. They aim to

simulate different numbers and types of faults in the SPL systems under test. In addition,

the test results are also simulated with the assumption that if a product contains any of

the features labeled as faulty, the execution of the product is classified as failed; otherwise,

it is classified as successful. However, their dataset has not been published.

Furthermore, Ngo et al. [5] propose a large dataset of variability faults found by testing.

In this dataset, to generate a large number of variability bugs, the bug generation process

includes three main steps: Product Sampling and Test Generating, Bug Seeding, and

Variability Bug Verifying. First, for an SPL system, a set of products is systematically

sampled by the existing techniques [3]. To inject a fault into the system, a random

modification is applied to the system’s original source code by using a mutation operator.

Finally, each generated bug is verified against the conditions of the variability bug to

ensure that the fault is a variability bug and is caught by the tests. The detailed design

decisions can be found in [5].

The dataset overview is shown in Table 2.3. In total, there are 1,570 buggy versions of the

six subject SPL systems. These systems are selected of different sizes of features and code

statements. Among them, 338 versions contain a single bug each, while 1,232 versions

have two or more bugs. There are about 70% of the bugs contained in the Assignment or

Conditional statements.

For testing, each buggy SPL system is sampled with 4-wise coverage. In general, for

an SPL system, the number of sampled products depends not only on the number of

features but also on the feature model of the system. For instance, although ExamDB

and BankAccountTP have the same number of features, to achieve 4-wise coverage by

sampling technique, BankAccountTP needs to generate 34 products. In comparison,

this figure for ExamDB is only eight products. Moreover, there are 5/6 systems whose
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Table 2.3: Dataset Statistics [5]

System
Details Test info Bug info

#LOC #F #SP #Tests Cov Single-Bug 2-Bug 3-Bug

ZipMe 3460 13 25 255.0 42.9 55 120 129

GPL 1944 27 99 86.9 99.4 105 190 77

Elevator-FH-JML 854 6 18 166.0 92.9 20 41 61

ExamDB 513 8 8 133.3 99.5 49 126 88

Email-FH-JML 439 9 27 86.0 97.7 36 34 56

BankAccountTP 143 8 34 19.8 99.9 73 238 72

#F and #SP stand for the number of features and the average sample size.

Cov stands for the statement coverage (%).

#IF stands for the average number of the involving features.

generated test suite reaches +90% statement coverage, and three of them almost reached

100% statement coverage. Especially due to a large code base, ZipMe has 255 tests per

product, but its statement coverage only stays at 42.9%.

To the best of our knowledge, this is the only public dataset containing the versions of the

SPL systems that failed by variability bugs found through testing. Thus, the dissertation

employs this dataset [5] for evaluating the approaches of detecting false-passing products,

localizing, and fixing variability faults.
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Chapter 3

False-passing Product Detection
This chapter introduces Clap, a novel approach to detect false-passing products in buggy

SPL systems. First, this chapter shows the motivation and formulate the problem of

detecting false-passing products in the SPL system. Then, this chapter introduces a

false-passing products detection approach and discusses the strategies to mitigate the

impact of these products on variability fault localization.

3.1 Introduction

Thorough testing is generally required to guarantee the quality of programs. However,

it is often hard, tedious, and time-consuming to conduct thorough testing in practice.

Various bugs could be neglected by the test suites since it is extremely difficult to cover

all the programs’ behaviors. Moreover, there are kinds of bugs which are challenging to

be detected due to their difficulties in infecting the program states and propagating their

incorrectness to the outputs [22]. Consequently, even when the defects is reached, there

are test cases that still obtain correct outputs, i.e., coincidentally correct/passed tests.

Indeed, coincidental correctness is a prevalent problem in software testing [21], and this

phenomenon causes a severely negative impact on FL performance [21, 23, 24].

Similar to testing in non-configurable code, the coincidental correctness phenomenon also

happens in SPL systems and causes difficulties in finding faults in these systems. Specif-

ically, for an SPL system, a set of products is often sampled for testing. Each sampled

product is composed of a set of features of the system and tested individually by its

test suite as a singleton program. For a buggy SPL system, the bugs could be in one

or more products. Ideally, if a product contains bugs (buggy products), the bugs should

be revealed by its test suite. In other words, there should be at least a failed test after

testing. However, if the test suite of a buggy product is ineffective in detecting the bugs,

the product’s overall test result will be passing. For instance, the suite does not cover

the product’s buggy statements or those test cases could reach the buggy statements but

could not propagate the incorrectness to the outputs, the product still passes all the tests.

Such a passing product is indeed a buggy product, yet incorrectly considered as passing.
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That passing product is namely a false-passing product. Due to the unreliability of test

results, these false-passing products might negatively impact the FL performance. In

particular, the performance of two main SBFL strategies in SPL systems, product-based

and test case-based, is affected.

First, the product-based FL techniques [6] evaluate the suspiciousness of a statement in

a buggy SPL system based on the appearance of the statement in failing and/or passing

products. Specially, the key idea to find bugs in an SPL system is that a statement which

is included in more failing products and fewer passing products is more likely to be buggy

than the other statements of the system. Misleadingly counting a buggy product as a

passing product incorrectly decreases the number of failing products and increases the

number of passing products containing the buggy statement. Consequently, the buggy

statement is considered less suspicious than it should be.

Second, the test case-based FL techniques [25] measure the suspicious scores of the state-

ments based on the numbers of failed and passed tests executed by them. Indeed, false-

passing products could lead to under-counting the number of failed tests and over-counting

the number of passed tests executed by the buggy statements. The reason is that false-

passing products contain bugs, but there is no failed test. In these false-passing products,

the buggy statements are not executed by any test, or they are reached by several tests,

yet those tests coincidentally passed. Both low coverage test suite and coincidentally

passed tests can cause inaccurate evaluation for the buggy statements.

This chapter introduces Clap, a novel false-passing product detection approach for SPL

systems that failed by variability bugs. The intuition of the proposed approach is that for

a buggy SPL system, the sampled products can share some common functionalities. If

the unexpected behaviors of the functionalities are revealed by the tests in some (failing)

products, the other products having similar functionalities are likely to be caused failures

by those unexpected behaviors. In Clap, false-passing products can be detected based

on the failure indications which are collected by reviewing the implementation and test

quality of the failing products. To evaluate the possibility that a passing product is a

false-passing one, Clap proposes several measurable attributes to assess the strength of

these failure indications in the product. The stronger indications, the more likely the

product is false-passing .

The proposed attributes are belonged to two aspects: product implementation (products’

source code) and test quality (the adequacy and the effectiveness of test suites). The at-
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tributes regarding product implementation reflect the possibility that the passing product

contains bugs. Intuitively, if the product has more (suspicious) statements executing the

tests failed in the failing products of the system, the product is more likely to contain

bugs. For the test quality of the product, the test adequacy reflects how its suite covers

the product’s code elements such as statements, branches, or paths [45]. A low-coverage

test suite could be unable to cover the incorrect elements in the buggy product. Hence,

the product with a lower-coverage test suite is more likely to be false-passing . Meanwhile,

the test effectiveness reflects how intensively the test suite verifies the product’s behaviors

and its ability to explore the product’s (in)correctness [46, 47]. The intuition is that if

the product is checked by a test suite which is less effective, its overall test result is less

reliable. Then, the product is more likely to be a false-passing one.

Furthermore, this chapter discusses several strategies to mitigate the negative impact

of false-passing products on the performance of the FL approaches. Since the negative

impact is mainly caused by the unreliability of the test results, the goal of Clap is to

improve the reliability of the test results by enhancing the test quality based on the failure

indications. Moreover, the reliability of test results could also be improved by disregarding

the unreliable test results at either product-level or test case-level.

This dissertation conducted several experiments on a large dataset of variability bugs

which contains 823 buggy versions of six widely-used SPL systems [5]. Totally, there

are 14,191 false-passing products and 22,555 true-passing products. The experimental

results show that Clap achieves more than 90% Accuracy in detecting false-passing and

true-passing products. The capability of Clap in mitigating the negative impact of false-

passing products on the FL performance is also evaluated. The experimental result shows

that Clap can greatly mitigate the negative impact of false-passing products on localizing

variability bugs and help developers find bugs much faster.

3.2 Motivation and Problem Formulation

3.2.1 Motivation

To empirically investigate the impact of false-passing products on FL, a preliminary study

was conducted on 600 buggy versions of six SPL systems in a dataset of variability bugs [5].

For each buggy version, the existence of false-passing products is simulated by modifying

the test suites of a random number of failing products. Specially, all the failed tests in
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the test suite T of each selected product p are removed. Once all the failed tests in T are

removed to create test suite T ′, the bugs in p revealed by T would not be revealed by T ′. As

a result, p becomes a false-passing product with test suite T ′. After the simulation, each

buggy version contains three groups of products: (1) failing products which contain both

failed and passed tests; (2) false-passing products which were originally failing products,

yet their failed tests were removed; and (3) passing products which originally passed all

the tests.

This chapter applies two state-of-the-art FL approaches, SBFL [31, 115–119] and Var-

Cop 1 to localize the variability bugs in each system with and without the existence

of the (simulated) false-passing products. With the existence of false-passing products

(With FPs), testing information of all the three groups of products, i.e., failing prod-

ucts, false-passing products, and passing products, are used to measure the statements’

suspiciousness. Without the existence of false-passing products (Without FPs), testing

information of only failing products and passing products are used for localizing faults.

Table 3.1 shows the average Rank of the buggy statements which are localized by Var-

Cop and SBFL using the five most popular ranking metrics. As seen, the presence of

false-passing products after testing could significantly reduce the performance of the FL

techniques. On average, with the presence of false-passing products, the results of both

VarCop and SBFL are significantly decreased by 60% and 20%, respectively. For in-

stance, without the existence of the false-passing products, by VarCop with the metric

Barinel, the bugs can be found after investigating 5 statements. However, due to the

presence of the false-passing products, this performance is decreased by 60%, i.e., 12

statements need to be investigated to find the bugs. Similar to SBFL with the metric

Barinel, the FL performance is decreased by 20%, i.e., the number of statements that

need to be examined increased from 8 to 10 statements.

3.2.2 Problem Formulation

After testing, for an SPL systemS, let P = {p1, ..., pn} be the set of the sampled products.

Each product pi ∈ P is tested by a corresponding test suite Ti. In general, the system S

contains variability bugs if and only if P is categorized into two separate non-empty sets

based on their overall test results: the passing products PP and the failing products PF ,

1This is an approach proposed by this dissertation for variability FL. This approach is intro-

duced in Chapter 4.
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Table 3.1: Empirical study about the impact of false-passing products on variability fault

localization performance (in Rank)

Ranking Metrics
VarCop SBFL

With

FPs

Without

FPs

With

FPs

Without

FPs

Tarantula 11.47 6.25 9.92 8.22

Ochiai 7.93 5.05 7.38 5.91

Op2 6.40 5.71 7.31 7.15

Barinel 11.89 5.36 9.91 8.22

Dstar 7.13 4.87 7.36 5.91

PP ∪ PF = P [12, 91]. Each product in PF fails at least one test, while every product in

PP passes all the test cases in its test suite. Among the passing products, a false-passing

product contains bugs and should be a failing product yet has passed all the tests because

of its ineffective test suite.

Definition 3.1 (False-passing product). Given a tested product p ∈ P and its test

suite T , product p is a false-passing product if the following conditions are satisfied:

(i) There exists a statement s in p, such that s can cause failures for p, and

(ii) Product p passed all the test cases in T .

In other words, for false-passing product p, the current test suite T of p is ineffective

in detecting bugs in p, thus p has not failed any test in T . Additionally, there exists a

test suite T ′ ̸= T such that p could fail at least a test in T ′. In this case, T ′ is more

bug-detecting effective than T , and the test results of T ′ is more reliable than that of T .

On the opposite side, true-passing products in a tested buggy SPL system can be formally

defined as Definition 3.2.

Definition 3.2 (True-passing product). Given a tested product p whose test suite is

T , p is a true-passing product if:

(i) There does not exist a statement s in p, such that s can cause the failures for p, and
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(ii) As a result, product p passed all the test cases in T .

Definition 3.3 (False-passing product detection). Given 4-tuple ⟨S, P, T ,V⟩, where:

• S is a tested SPL system containing variability bugs,

• P = {p1, ..., pn} is the set of n sampled products, P = PP ∪ PF , where PP and PF

are the sets of passing and failing products of S,

• T = {T1, ..., Tn} is a set of test suites, where ∀i ∈ [1, n], Ti ∈ T is the test suite of

pi ∈ P , and

• V = {V1, ..., Vn} is the set of the program spectra, where ∀i ∈ [1, n], Vi ∈ V is the

program spectrum of pi with the test suite Ti ∈ T .

False-passing product detection is to output the set of the false-passing products in PP .

As shown in Section 3.2.1, detecting false-passing products could help significantly im-

prove the performance of FL techniques. However, false-passing products could be very

challenging to be detected. Indeed, false-passing phenomenon is caused by the ineffec-

tiveness of testing, thus the bugs in the (false-passing) products are not revealed. To

identify whether or not a passing product is false-passing , new test cases can be gener-

ated to further test the product. In practice, it could be prohibitively expensive to test

all the product’s behaviors. Furthermore, although a large number of tests are added, if

the product still passes all the newly generated test cases, it still is not able to confirm

the product is false-passing or true-passing . Moreover, another approach in detecting

false-passing products is to figure out whether the passing products contain the bugs.

However, the bugs, which cause failures in the system, have not been identified yet at

that point. This means identifying the presence of bugs in the passing products is also

problematic. Hence, false-passing product detection is necessary but challenging.

3.3 False-passing Product Detection

As a false-passing product is a product containing bugs but still passed all its test cases,

its overall test result, i.e., being a passing product, is unreliable. Hence, determining if a

passing product is false-passing can be done by examining: (i) whether or not the product

contains any bug and (ii) the reliability of the state of passing all its test cases.
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In general, a product is considered containing a bug if it contains a buggy statement

and the statement’s bugginess can be propagated to product’s incorrect output(s). To

expose the incorrectness, the buggy statement rarely executes solo, it often executes to-

gether with the other statements. Such statements are called bug-involving statements.

Thus, to determine whether the bug is contained in the product, Clap examines whether

the product contains both the buggy statement and the corresponding set of bug-involving

statements.

If a product contains bugs, yet passes all its tests, its test suite could be inadequate [45]

and ineffective [46, 47] in exploring the bug(s) in the product. Its test suite is in low cov-

erage of the product’s behaviors and could not cover the unexpected ones. Consequently,

the product still passed all its test cases and is misleadingly considered as a passing prod-

uct. Intuitively, the more inadequate and ineffective the test suite, the less reliable the

product’s overall test result. Hence, to verify the reliability of the product’s overall test

result, it is essential to examine the adequacy and effectiveness of the product’s test suite.

In practice, a buggy system could contain multiple bugs, and not all of the bugs are

revealed after testing the sampled products. This work focuses on detecting false-passing

products regarding the bugs which have been revealed by the failed tests in the failing

products of the system. The other passing products, which can not be failed by any of

these revealed bugs, are considered as true-passing products.

Intuitively, for a set of sampled products of the system, the program and the tests of the

failing products can provide the indications to examine the passing ones.

The failure indications in the failing products are investigated in terms of product imple-

mentation (i.e., the existence of buggy statements and bug-involving statements) and test

quality (i.e., test adequacy and test effectiveness). Next, determining if a passing product

is false-passing can be done by measuring the strength of these indications in the product.

To evaluate the strength of the failure indications in a passing product, Clap proposes a

set of measurable attributes. The product implementation attributes measure the possi-

bility that the product contains buggy statements and corresponding sets of bug-involving

statements (Section 3.3.1). The test quality is examined in terms of test adequacy and

test effectiveness. The test adequacy attributes measure to what extent the suite covers

product’s elements (Section 3.3.2). The test effectiveness attributes examine how each

test case verifies the product’s behaviors (Section 3.3.3). Overall, if a passing product

has a high possibility of containing bug(s) and has a low-quality test suite, the product
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Figure 3.1: Clap’s overview

is more likely to be false-passing . The approach overview is shown in Figure 3.1.

To verify the selection of the proposed attributes in detecting false-passing products, this

chapter conducts experiments on 159 buggy versions of BankAccountTP (so-called veri-

fication dataset). Overall, there are 1,626 failing products, 1,763 true-passing products,

and 2,017 false-passing products. The construction of this dataset is described in detail

in Section 3.5.2. Each attribute’s value is measured in each product to confirm that the

attribute can distinguish the true-passing and false-passing products.

3.3.1 Suspiciousness of Product Implementation

To evaluate the failure indications in a passing product p of the buggy SPL system S

regarding the product’s implementation, Clap investigates the possibility that p contains

the buggy statements which caused the failures in the failing products of S. Additionally,

the likelihood that p has the statements which involve contributing and propagating the

incorrectness of the buggy statements (bug-involving statements) is also evaluated while

examining the implementation of p.

How possibly does a product contain buggy statements?

For a passing product p, Clap estimates the possibility that p contains buggy statements

by preliminarily measuring the suspiciousness of the statements in p. Intuitively, if state-

ments in p are highly suspicious, p will be more likely to contain the buggy statements.

The possibility that p contains buggy statements, bscp(p), can be estimated by the total

suspicious scores of the statements in that product as shown in Equation 3.1. In this
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Figure 3.2: The presence of the suspicious statements in the passing products

Equation, Sp = {s1, ..., sn} is the set of statements of product p, and ϕ(s, PF ,M) is the

function measuring the suspiciousness score of statement s by using the testing informa-

tion of the failing products in PF and the FL technique M . Also, bscp(p) is normalized

into the range of [0, 1].

bscp(p) = normalize

(∑
s∈Sp

ϕ(s, PF ,M)

)
(3.1)

In bscp(p), any FL technique, which can calculate the suspicious score of a statement in an

SPL system, can be applied as M in function ϕ. This work uses the testing information of

only failing products PF , whose overall test results are reliable at this point, to measure

the suspiciousness of the statements. However, to avoid missing the useful information

provided by test results of the passing products, one can use all the sampled products P

in the statement suspiciousness evaluation function, ϕ.

Figure 3.2 shows the possibility that passing products contain buggy statements in the

verification dataset. For each buggy version, Clap preliminarily measures the suspicious-

ness of the statements by using SBFL with Op2 on the program spectra of the failing

products (function ϕ). As seen, 1418 true-passing products (out of 1763 true-passing

products, about 80%) have the bug-containing possibility less than 0.2. Meanwhile, 1035

false-passing products (out of 2017 false-passing products, about 50%) have this possibil-

ity greater than 0.8. This illustrates that the false-passing products often contain a large

number of highly suspicious statements. Thus, the higher bug-containing possibility of a

passing product is, the more likely it is a false-passing product.

39



How possibly does a product have bug-involving statements?

Bug-involving statements of a buggy statement s are the statements, which impact/be

impacted by s. These statements must be executed together with s to expose the incor-

rectness of s to the outputs. To compute the possibility that a passing product p contains

bug-involving statements of s, Clap measures how similarly s impacting/being impacted

in p and a failing product p′ containing s. Intuitively, the more similarly s impacting/be-

ing impacted in p and p′, the more similarly s behaves in these two products. As a result,

the higher possibility that s can cause failures in p in a similar way s has caused the

failures in p′. This means that p is more likely to be a false-passing product.

Meanwhile, the buggy statements have not been found yet at this point. To estimate

the possibility that a passing product p contains bug-involving statements, Clap uses

suspicious statements and their impacting/being impacted statements. The suspicious

statements are the statements executed by at least a failed test in a failing product. The

statements impacting/being impacted by a suspicious statement are suspiciously to be

bug-involving statements, so called suspiciously-involving statements.

Let S = {s1, ..., sk} be the set of suspicious statements of the given SPL system. For a

statement s ∈ S, let B and B′ be the sets of impacting statements which impact s in p

and in a failing product p′, respectively. Also, F and F ′ are the sets of being-impacted

statements which are impacted by s in p and p′. The similarity of the sets of suspiciously-

involving statements of s in p and p′ is measured as the similarities of its impacting

statements(B and B′) and being impacted statements (F and F ′) in these two products

(Equation 3.2).

invol sim(s, p, p′) =
|{B ∩B′} ∪ {F ∩ F ′}|
|B ∪ F ∪B′ ∪ F ′|

(3.2)

The suspicious-involvement score of statement s in p is the maximum of the similarity of

the suspiciously-involving statement set of s in p to these sets of s in the failing products

as shown in Equation 3.3. The reason for the use of the max function is that Clap would

like to consider the most similarly s behaves in p compared to the other failing products

of the system. Intuitively, if p contains more suspiciously-involving statement sets which

are more similar to such sets in the failing products, p is more likely to be false-passing .

sis(s, p) = max
p′∈PF

invol sim(s, p, p′) (3.3)
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Figure 3.3: The presence of bug-involving statements in the passing products

Equation 3.4 shows how the possibility that p contains bug-involving statements is mea-

sured. This bug-involving statement containing possibility of p is aggregated from the

suspicious-involvement scores of all suspicious statements.

invol(p) =
∑
si∈S

sis(si, p) (3.4)

Figure 3.3 shows the suspicious-involvement scores of the passing products in the ver-

ification dataset. As seen, 85% of the true-passing products have scores less than 0.2.

Meanwhile, about 90% of the false-passing products have scores greater than 0.2. Spe-

cially, the scores of about 40% of false-passing products are in the top range, i.e., [0.8-1.0].

It shows that in the false-passing products, suspicious statements frequently impact/be

impacted by the other statements in the similar way they do in the failing products.

3.3.2 Test Adequacy

In general, assuring the quality of a program requires an adequate test suite which can

cover a large number of the program’s elements such as statements, branches, or paths [45].

If a program is tested by an inadequate test suite, the state of passing all the cases in

the test suite could not be reliable, since a large portion of the program’s elements is not

tested (thoroughly). Although adequacy criteria are all imperfect, they are useful indi-

cation for determining the inadequacy of test suites [45]. For simplicity, Clap measures

the adequacy of a test suite in statement coverage. Additionally, to evaluate the fault

diagnosability of test suites, Clap also applies DDU 2 [98], which is a simple and effective

criterion, as an adequacy attribute of the test suite.

2DDU is an acronym for Density-Diversity-Uniqueness.
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Figure 3.4: The portion of suspicious statements in the passing products which are not

covered by their test suites

Code coverage

The prerequisite condition for a bug to be revealed in a product is that the buggy state-

ment is reached (executed) by a test. Indeed, an adequate test suite should widely cover

the suspicious statements contained in the product. The more suspicious statements which

are not covered by the test suite of the product, the less reliable the overall passing state

of the product is.

In general, for the given SPL system, any statement executed by any failed test in a failing

product is suspicious to be a buggy one. Let S = {s1, ..., sk} be the set of suspicious

statements, and Sp be the statements of a passing product p ∈ PP . The set of suspicious

statements in p is K = S∩Sp. Specially, K is categorized into two sets, Ke and Kne, such

that K = Ke ∪Kne where Ke and Kne are the sets of statements which are covered and

not covered by the test suite T of p. The noncoverage rate of p which reflects the portion

of suspicious statements in p, yet not covered by T , is measured by the Equation 3.5.

noncov(p, T ) =
|Kne|
|K|

(3.5)

Figure 3.4 shows this code coverage attribute of the passing products in the verification

dataset. In fact, the general statement coverage of the test suites of the experimental data

is quite high. This means that almost the statements in each product are covered by the

test suite, and very few number statements in the product are not covered. That is the

reason why in Figure 3.4 most of the products (both the true-passing and false-passing

products) have small portions of non-coverage. However, this attribute is still useful to de-

tect false-passing products, since various false-passing products have higher noncoverage

rates than the others. As seen, 100% of the true-passing products have the noncover-
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Figure 3.5: The undiagnosability (DDU’) of the passing products’ test suites

age rates lower than 0.2, while the noncoverage rates of 40% false-passing products are

greater than this number. This result shows that the test suites of the false-passing prod-

ucts usually do not cover their suspicious statements. Meanwhile, the test suites of the

true-passing products often have better coverage of the suspicious statements.

Density-Diversity-Uniqueness

In addition, to thoroughly evaluate the test suite, Clap takes into account DDU metric

proposed by Perez et al. [98] to evaluate the adequacy of the test suite regarding fault

diagnosability. While the coverage attribute abstracts the execution information of test

executions to favor an overall assessment of the suite, DDU takes into account per-test

execution information, so it provides further insight about each test case of the suite.

The main idea of DDU is that a high-quality test suite must contain the test cases such

that program elements are frequently tested (density) in diverse combinations (diversity),

as well as the corresponding execution vectors of the elements in the program spectrum

are distinguishable (uniqueness) [98]. The DDU value is from 0.0 to 1.0, and the DDU

of an ideal test suite of a product is 1.0. Thus, the product whose test suite with a lower

fault diagnosability in DDU is more likely to be false-passing . Specially, for a product p,

the “undiagnosablity” of its test suite is DDU ′(p, T ) = 1−DDU(p, T ) where DDU(p, T )

is the DDU value of the test suite T of product p. As a result, the higher DDU ′(p, T ),

the lower-quality test suite, and p is more likely to be a false-passing product.

Figure 3.5 shows DDU ′ of the passing products in the verification dataset. There are

about 90% of the false-passing products have DDU’ in the range of [0.8, 1], while 60% of

the true-passing products have DDU’ in the lower range. This shows that the true-passing

products have more diagnosable test suites, so their states of passing all the tests are more
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reliable. With the less diagnosable test suites, the overall test results of the false-passing

products are less reliable.

In practice, there are multiple criteria to evaluate the adequacy of the test suites, such as

branch coverage, path coverage, mutation score, etc. These criteria could be applied using

the same principle. Although sophisticated criteria could provide a more comprehensive

adequacy evaluation, the computation could be expensive. For example, mutation score

is a popular and powerful metric to evaluate the test suite. However, to calculate the

mutation score, a large number of mutants need to be tested against the original test suite.

This could be costly and time-consuming, especially for the large and complex systems

containing many sampled products with large test suites [134–136]. Thus, to ensure the

efficiency of the proposed attributes measuring the test suite’s adequacy, Clap employs

statement coverage and DDU.

3.3.3 Test Effectiveness

For a product p, the fault-detecting effectiveness of its test suite T shows how intensively

T tests the product’s behaviors and T ’s ability to explore the product’s incorrectness [46,

47]. To evaluate the effectiveness of the suite T , Clap aims to investigate T by two

attributes: incorrectness verifiability and correctness reflectability. For a passing product

p, incorrectness verifiability measures how p’s test suite, T , covers the product’s suspicious

behaviors. Meanwhile, correctness reflectability indicates that the passed tests of the

product really reflect its correct behaviors (i.e., these tests are not just coincidentally

passed).

Note that, the test adequacy attributes focus on how and to what extent the product’s

elements are covered by the test suite. These attributes do not take into account the

results of the test cases. Meanwhile, the test effectiveness attributes focus on how the

suite verifies the product’s behaviors. Not only the product’s elements but also the results

of the tests are considered in the evaluation process.

In practice, the behaviors of the products are dynamically considered regarding the execu-

tion vectors in the product’s spectrum. The vector for a failed test represents an incorrect

behavior of the product, so-called incorrect behavior vector. In a buggy system, the incor-

rect behaviors are represented by the incorrect behavior vectors in the failing products.

These vectors record the executions of the failing products in the failed tests. Meanwhile,

the correct behaviors are represented by executions of truly passed tests which are not just
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coincidentally passed. Thus, this work leverages execution vectors in spectra to measure

incorrectness verifiability and correctness reflectability.

Incorrectness verifiability

From the incorrect behaviors of the failing products PF of the given system S, Clap

identifies the behaviors which are suspiciously contained in a passing product p ∈ Pp and

then evaluate whether these behaviors are covered by the test cases of p. Intuitively, if p

contains suspicious behaviors, these behaviors should be verified by test cases in its test

suite, T , to sufficiently ensure the correctness of the product. To evaluate the reliability

of the state of being a passing product of p with its test suite T , Clap measures the

number of incorrect behaviors are (i) potentially contained in p and (ii) not covered by the

test cases in T . Intuitively, the correctness of p is less reliable if p potentially contains

more such incorrect behaviors.

For (i), an incorrect behavior expressed by the execution vector v is potentially contained

in p if p contains a large portion of the executed statements in v. This portion should

be larger than a threshold RI1. The reason is that the products of an SPL system are

composed of different sets of features, a product rarely contains a set of statements which

is exactly the same as an execution of a test in another.

For (ii), the behavior expressed by v is not covered by the test in p if v is not similar to

any execution vector in p’s spectrum. Similar to (1), two execution vectors are similar if

they share a large portion executed statements and this portion should be greater than a

threshold RI2.

For (i), let VIB = {vf1, ..., vfn} be the set of all the incorrect behavior vectors of the

failing products PF . Also, let Sp be the set of statements of the passing product p, and

Vp = {v1, ..., vm} be the set of the execution vectors in p’s spectrum. Product p potentially

contains a behavior presented by an incorrect behavior vector, vfi ∈ VIB, if Sp contains

a large portion of the statements executed in that vector. Equation 3.6 shows how Clap

identifies whether incorrect behavior vfi is potentially contained by product p.

|{s ∈ vfi|vfi[s] = 1 ∧ s ∈ Sp}|
|{s ∈ vfi|vfi[s] = 1}|

≥ RI1 (3.6)

For (ii), the behavior expressed by vfi is covered by the test cases in T if there exists an

execution vector recorded in p’s spectrum similar to vfi. To calculate the similarity of two
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Figure 3.6: The incorrectness verification of the passing products’ test suites

vectors, Jaccard is adopt as a similarity formulation. An execution vector vj ∈ Vp is similar

to vfi if the condition in Equation 3.7 is satisfied. In this Equation, a is the number of

statements that executed in both vj and vfi, a = |{s ∈ vj |vj [s] = 1∧ vfi[s] = 1}|. b is the
number of statements executed in vj but not in vfi, b = |{s ∈ vj |vj [s] = 1 ∧ vfi[s] = 0}|.
Meanwhile, c is the number of statements which are not executed in vj but executed in

vfi, c = |{s ∈ vj |vj [s] = 0 ∧ vfi[s] = 1}|.

sim(vj , vfi) =
a

a+ b+ c
≥ RI2 (3.7)

The incorrectness verifiability score of the product p is calculated as the portion of the

incorrect behaviors potentially contained by p but not covered by any test in the product’s

test suite T . Let I1 be the set of incorrect behaviors vectors whose executed statements are

contained in p. Also, let I2 be the set of incorrect behaviors vectors in I1 and not similar

to any execution vector in the spectrum of p. The incorrectness verifiability attribute is

measured as Equation 3.8.

iv(p, T ) =
|I2|
|I1|

(3.8)

Figure 3.6 shows the portion of the incorrect behaviors suspiciously contained in the

passing products in the verification dataset, yet not tested by the products’ test suites. In

most true-passing products, the suspicious behaviors are covered by at least a test in their

suites. However, two-thirds of the false-passing products contain suspicious behaviors, and

these behaviors are not tested by the products’ tests. This shows that the false-passing

products’ test suites are often ineffective in verifying their suspicious behaviors.
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Correctness reflectability

In practice, not all of the passed tests can reliably confirm the success of the program since

they could be coincidentally correct. Also, coincidentally passed tests are unbefitting for

verifying the correctness of the product [21]. To determine if the correctness of a product

is reliably reflected by its passed tests, Clap measures the portion of passed tests of

p which are likely to be truly correct. The more truly passed tests, the more effective

p’s test suite. Intuitively, with fewer truly passed tests, p has a higher possibility to be

false-passing .

For a passing product p, a passed test in p can truly represent a correct behavior if its

execution vector is similar to any truly passed test’s execution vector of any failing product

of the system. In a failing product, a test whose execution vector is not similar to the

execution vector of a failed test can be considered as a truly passed test. This is because

these tests are less likely to execute the faults revealed in the failed tests. Meanwhile, a

passed test whose execution vectors are similar to the execution vector of a failed test,

could be coincidentally passed. The reason is that with the similar execution vector but

only one of them can reveal the bugs, then the other could reach the buggy statements

but is ineffective in exposing the bugginess.

Given an SPL system S, let VIB = {vf1, ..., vfn} and VCB = {vp1, ..., vpm} be the sets

of incorrect and correct behaviors of the failing products. In other words, VIB and VCB

are sets of execution vectors of the failed tests and passed tests in the failing products of

system S. A passed test in a failing product whose execution vector vpi ∈ VCB, is truly

passed if its execution vector is not similar to any failed test’s execution vector, formally,

̸ ∃vfj ∈ VIB, sim(vpi, vfj) ≥ RC , where RC is a similarity threshold.

Let Vp = {v1, ..., vk} be the set of execution vectors of passing product p with its test suite

T . The correctness reflected by a passed test in T , whose execution vector vi ∈ Vp, is

confirmed if vi is similar to a truly correct test’s execution vector in the failing products.

Specifically, ∃vpj ∈ VCB, ̸ ∃vft ∈ VIB, sim(vpj , vft) ≥ RC , and sim(vpj , vi) ≥ RC .

Let C be the number of truly correct tests of p, the correctness reflectability value of a

passing product p is measured by Equation 3.9. The correctness reflectability value is 0

when all the passed tests of the passing product p are confirmed by truly correct tests of

the failing products. This value is 1 when none of the tests reflecting the correctness of p

is confirmed.
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Figure 3.7: The correctness reflectability of the passing products’ test suites

cr(p, T ) = 1− C

|Vp|
(3.9)

Figure 3.7 shows the correctness reflectability of the passing products in the verification

dataset. The figures of this attribute of all the true-passing products are in the lowest

range, i.e., [0, 0.2). This means that the correctness reflected by almost passed tests in

the true-passing products is confirmed by at least a truly passed test of a failing product.

Meanwhile, more than 70% of the false-passing products contain passed tests, but the

correctness reflected by their passed tests could not be confirmed. This indicates the

false-passing products often contain passed tests, yet many of them could not represent

the products’ true correctness.

3.3.4 Detecting False-passing Products

This work considers the problem of false-passing product detection as a binary classifica-

tion problem. Specifically, the possibility that a product p is false-passing is measured by

the proposed attributes regarding product’s implementation and its test quality. Product

p is represented by a six-dimension vector x = ⟨a1, a2, a3, a4, a5, a6⟩, where a1 = bscp(p)

and a2 = invol(p) reflect whether the product’s implementation contains buggy state-

ments and the corresponding bug-involving statements. The remaining attributes reflect

its test quality, a3 = noncov(p, T ) and a4 = DDU ′(p, T ) are about test adequacy, while

a5 = iv(p, T ), and a6 = cr(p, T ) are about test effectiveness. For each attribute, the

higher score, the more likely p is false-passing .

A classifier h(x), Equation 3.10, could be applied to predict the possibility that product

presented by vector x is a false-passing product. The label y of the product is false-

passing if the result of function h(x) is greater than a threshold Rfp, otherwise, it is a
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true-passing product. In this work, the default threshold, Rfp = 0.5, is used. However,

one can further consider Precision-Recall curve to trade-off between precision and recall

and select the optimal decision threshold.

y =

false-passing if h(x) ≥ Rfp

true-passing otherwise
(3.10)

In practice, h(x) could be any machine learning classifier such as Support Vector Machine,

K-Nearest Neighbor, or Logistic Regression. For example, if Logistic Regression is selected

as a classification algorithm, the classification formula of h(x) is h(x) = 1
1+e−(wx+b) , in

which w and b are weights and a bias term that learned via training. The impact of

different classifiers on the performance of Clap is empirically evaluated in Section 3.6.

3.4 Mitigation of Negative Impact of False-passing Products

on Variability Fault Localization

As the negative impact on variability FL is caused by false-passing products’ unreliable

test results, there are two main directions to mitigate their negative impacts. Specifically,

either the reliability can be improved or the unreliability can be eliminated in the test re-

sults of these products. Firstly, the reliability of test results can be improved by enhancing

the quality of the test suites of the false-passing products. Secondly, the unreliability of

test results can be eliminated by removing products whose unreliable test results and/or

removing low-quality test cases.

First, the FL performance can be boosted by improving the reliability of the false-passing

products’ test results. Specifically, the false-passing products can be more thoroughly

tested by a better test suite to explore their bugginess. Once their bugs are revealed by

test cases, Clap not only has more information about the faults but also has better as-

sessments of the (overall) test results of the products. Intuitively, this could help improve

the performance of variability FL.

In particular, the failure indications (e.g., suspicious statements and behaviors) can be

used to guide test generators to produce better test suites for these false-passing products.

Specially, the newly generated test cases should focus on these failure indications. For

instance, to have a more adequate test suite, new test cases can be added to cover the

suspicious statements which have not been covered yet (Section 3.3.2). To improve the
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test effectiveness, new test cases could be added to verify whether the suspicious behaviors

can cause failures for the false-passing products (Section 3.3.3).

Second, the results of FL techniques can also be enhanced by eliminating the unreliability

in the test results of the false-passing products. Particularly, the unreliable test results

can be at either the product-level or the test case-level. For the product-level, the test

result is the overall test result (i.e., being failing or passing) of a product. Meanwhile, the

test result at the test case-level is the result (i.e., failed or passed) of a single test case.

For the product-level, Clap can remove all the detected false-passing products before

localizing variability faults. This strategy reduces the number of buggy products, yet

incorrectly considered as passing ones. Thus, it can benefit the product-base assessment

FL techniques [6] which evaluate the suspiciousness of the statements according to the

number of failing and/or passing products.

For the test case-level, the coincidentally passed tests should be removed. The reason

is that the coincidentally passed tests improperly increase the number of passed tests

executed by the buggy statements [21]. As a result, these test cases can negatively impact

the performance of test case-based assessment FL approaches [25] which evaluate the

statements’ suspiciousness based on the number of failed and/or passed tests. To clean

such tests, each passed test of a product should be carefully investigated.

In summary, this section discusses the directions to mitigate false-passing products’ im-

pact on FL techniques. This work evaluates the effectiveness of two methods: adding

new tests to improve the product’s test quality and eliminating the unreliability at the

product-level. The mitigation direction eliminating coincidentally passed tests required

thorough investigation to carefully review and eliminate unreliable tests. The techniques

in this direction are beyond the scope of this work and left for future work.

3.5 Empirical Methodology

3.5.1 Research Questions

To evaluate Clap in detecting false-passing products and mitigating their negative im-

pacts on fault localization, this chapter seeks to answer the following research questions:

RQ1: Accuracy Analysis: How accurate is Clap in detecting false-passing products?

RQ2: Mitigating Impact of False-passing Products on Fault Localization: How
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Table 3.2: Products’ test suites before and after being transformed

System
#Transformed

products

Original test suite T New test suite T’

#Tests Cov (%) #Tests Cov (%)

BankAccountTP 1,833 22 96.7 19 92.8

Elevator 161 165 76.5 120 69.4

Email 420 94 97.2 89 96.0

ExamDB 126 136 96.6 128 96.4

GPL 6,091 90 98.7 88 98.2

ZipMe 541 253 42.9 249 42.7

#Tests and Cov stand for the number of tests and statement coverage in a product.

does Clap mitigate the negative impact of false-passing products on the performance of

state-of-the-art FL techniques including VarCop and SBFL [29, 30]?

RQ3. Sensitivity Analysis: How does Clap perform on different evaluation scenarios?

And how do different training data sizes impact Clap’s performance?

RQ4. Intrinsic Analysis: How do the different attributes of Clap contribute to the

false-passing product detection performance?

RQ5. Time Complexity: What is Clap’s running time?

3.5.2 Dataset

To evaluate Clap, failing, true-passing , and false-passing products in existing buggy SPL

systems are systematically collected as follows.

First, to practically collect false-passing products, a random number of failing products

in a buggy SPL system are transformed into passing products by removing all their failed

tests. Indeed, for a failing product p with the original test suite T , removing all the failed

tests in T creates a new test suite T ′. Product p with the test suite T ′ is false-passing

since p fails with T , but not with T ′. The average number of tests in the original test

suite T and the new test suite T ′, as well as the corresponding statement coverage of the

products in each system are shown in Table 3.2.

Although removing failed tests in T slightly affects the statement coverage of p (i.e.,

about 2%), this data collecting procedure is independent of the proposed approach. By this
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procedure, only failed tests in T are removed, and all the passed tests in the original test

suite of p are kept unchanged. Meanwhile, the attributes of Clap measure how likely p

is a false-passing product by investigating its implementations and its passed tests.

Second, to collect true-passing products, the overall test results of the passing products

are verified and labeled accordingly. In practice, this process could be very tedious and

time-consuming even for experts. To practically verify the overall test result of a passing

product p′, this work proposes a semi-automated procedure generating tests and making

the product fail in three steps. If p′ fails any test in each step, then p′ with its original test

suite is a false-passing one. Otherwise, it can be considered as a true-passing product.

Step 1. Automatically generating new test cases for p′. Multiple test generation tools, e.g.,

Evosuite [137] and Randoop [138], are used to generate new tests for p′. If the product is

failed by any added test, the product with the original test suite is a false-passing product.

If the product still passes all the added tests, moving to the next step.

Step 2. Applying a hybrid test generator. The bugs of the system have been explored by

failed tests of the failing products. Thus, these failed tests can be used as the guidance to

verify the existence of the bugs in p′. Specifically, failed tests of the failing products are

tried to adapt to test p′. In addition, for an SPL system, each product is composed from

different set of features, thus tests need to be adapted appropriately according to each

product, and not all of the failed tests can be adapted to test another products. If any

adapted test can be executed by p′ and p′ creates incorrect output, p′ with the original

test suite is a false-passing product. Otherwise, moving to the next step.

Step 3. Manually investigating the product. p′ is manually investigated and generated

tests to carefully confirm its correctness or bugginess. If p′ fails any newly generated test,

p′ with the original test suite is false-passing . Otherwise, if the product still passes all

the manually generated tests, p′ with the original test suite is a true-passing product.

This work applied the procedure on the sampled products of the buggy systems in the

dataset collected by Ngo et al. [5]. This dataset includes 1,570 buggy versions with their

sampled products and the corresponding test suites of six Java SPL systems which are

widely used in SPL studies. A buggy version is a version of the SPL system which contain

one or more bug. In other word, a buggy version can be considered as a buggy system.

After labeling, there are 823 buggy versions which contains large numbers of products

in all three kinds: failing, true-passing , and false-passing products. All the other buggy

versions which are not satisfied are removed. Table 3.3 shows the overview of the dataset.

52



Table 3.3: Dataset overview

System
Buggy versions Products

1-Bug 2-Bug 3-Bug #Fs #FPs #TPs

BankAccountTP 41 117 29 2,055 2,328 1,975

Elevator 14 17 10 217 326 195

Email 14 21 34 553 587 723

ExamDB 10 44 23 201 127 288

GPL 97 188 70 6,612 9,995 18,538

ZipMe 17 46 31 686 828 836

Total 10,433 14,191 22,555

#Tests and Cov stand for the number of tests and statement coverage in a product.

N-Bug represents the number of bugs (i.e., N) in the buggy version.

#Fs, #FPs, and #TPs stand for failing, false-passing , and true-passing products.

3.5.3 Empirical Procedure

Accuracy analysis. 823 buggy versions are split into five folds (5-fold cross-validation).

Specifically, four folds are picked for training and one remaining fold is used for testing.

This work adapted cross-validation to aggregate average results for the final assessment.

Mitigating impact of false-passing products on fault localization. The buggy

versions in five systems are used to train the false-passing product detection model, and

then the trained model was used to detect false-passing products in the buggy versions

of the remaining system. Next, the effectiveness of the proposed mitigation techniques

on FL performance is evaluated. The original FL performance is measured using all the

sampled products and their corresponding testing information. The performance after

applying the mitigation techniques: (1) removing all the detected false-passing products,

only using the sampled products which are not predicted to be false-passing and their

testing information (removing FPs); (2) generating new tests for detected false-passing

products for further testing, then if the faults are revealed (i.e., at least one added tests

is failed), these products are used with the other products which are not predicted to be

false-passing to localize faults (adding tests).

Sensitivity analysis. This work conducted two experiments to measure the impact of

different evaluation scenarios and training data sizes.

First, this dissertation posits that different systems, buggy versions of a system, and

products in a version have different degrees of relevance. Hence, to evaluate the impact of
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the specialities of systems, buggy versions, and products on Clap, the following scenarios

are experimented.

• System-based edition. Clap is trained with the products in buggy versions of

five systems, and the products in the buggy versions of the remaining system are

used for testing. In practice, this setting reflects the case when the development

history of the system is not very long, and the data about the current system is not

available/sufficient. Thus, the data of the other systems are leveraged for detecting

false-passing products in the developing system.

• Version-based edition. All the buggy versions of the six systems are shuffled

and then split into a training set and a testing set by the ratio 8:2. This scenario

comes from the idea when the system is developed for a while, and the information

from other systems, as well as the other buggy versions of the developing system are

available for detecting new false-passing products.

• Product-based edition. All the products in all the buggy versions of the six

systems are shuffled and then split into a training set and a testing set by the ratio

8:2. The idea of this scenario is that during assuring systems’ quality, the sampled

products are progressively tested and determined if they are false-passing . Thus,

the detected and confirmed false-passing products could be used for training and

detecting other false-passing products.

• Within-system edition. The experiment on the buggy versions of each system is

conducted. The buggy versions of a system are split into a training set and a testing

set by the ratio 8:2. This is also another real-world setting. When the data from

other systems is not available, then only the information from testing system is used

to detect false-passing in the system.

Second, as Clap is data-driven, this experiment studies the impact of training data

sizes on Clap’s performance. A system is randomly picked for testing. The training

data is gradually increased by adding data from the remaining systems.

Intrinsic analysis. To better understand the proposed approach, this experiment stud-

ies the impact of the attributes on Clap’s performance: product implementation, test

adequacy, and test effectiveness. Different variants of Clap are built, each variant use
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attributes only in one of these aspects to detect false-passing products, and measure their

performance.

3.5.4 Metrics

This work adopt Accuracy, Precision, Recall, and F1-score which are widely used to

evaluate classification model [139]. Let PTP and PFP be the sets of predicted true-

passing and false-passing products, and ATP and AFP be the sets of actual true-passing

and false-passing products, respectively. These metrics are measured as the following

formulas.

Acc. Accuracy measures the general performance of the classification model. Accuracy

indicates the ratio of correctly predicted true-passing and false-passing products out of

the total passing products. Equation 3.11 shows how to measure Accuracy of the models.

Acc =
|{PTP ∩ ATP} ∪ {PFP ∩ AFP}|

|ATP ∪ AFP |
(3.11)

Prec. Precision indicates the prediction correctness for true-passing , Prec(TP ), or false-

passing , Prec(FP ). The Precision for true-passing and false-passing product prediction

are measured by Equation 3.12 and Equation 3.13, respectively.

Prec(TP ) =
|PTP ∩ ATP |
|PTP |

(3.12)

Prec(FP ) =
|PFP ∩ AFP |
|PFP |

(3.13)

Recall. Recall indicates the effectiveness of prediction, the portion of correctly pre-

dicted true-passing (false-passing) products out of the total number of actual true-passing

(false-passing) products. Recall of true-passing and false-passing product detection are

measured by Equation 3.14 and Equation 3.15, respectively.

Recall(TP ) =
|PTP ∩ ATP |
|ATP |

(3.14)

Recall(FP ) =
|PFP ∩ AFP |
|AFP |

(3.15)
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F1-score. F1-score is defined as the harmonic mean of precision and recall, it indicates

balance between those. F1-scores of true-passing and false-passing product detection are

measured by Equation 3.16 and Equation 3.17, respectively.

F1(TP ) = 2 ∗ Prec(TP )×Recall(TP )

Prec(TP ) +Recall(TP )
(3.16)

F1(FP ) = 2 ∗ Prec(FP )×Recall(FP )

Prec(FP ) +Recall(FP )
(3.17)

To measure FL performance, Rank and EXAM are employed. These metrics are widely

used in the existing FL studies [4, 25].

Rank. Rank indicates the position of the buggy statements in the resulted lists of the

FL techniques. The lower rank of buggy statements, the more effective approach. If

there are multiple statements having the same score, buggy statements are ranked last

among them. For the cases of multiple bugs, this work measured Rank of the first buggy

statement (best rank) in the resulted lists.

EXAM. EXAM [140] is the proportion of the statements needs to be examined until the

first faulty one is reached (Equation 3.18). In Equation 3.18, r is the rank of the buggy

statement and N is the total number of statements in the list. The lower EXAM, the

better FL technique.

EXAM =
r

N
× 100% (3.18)

3.5.5 Experimental Setup

Classifier selection. Six popular classifiers are selected based on their use in the related

studies [141, 142]. The classifiers include Support Vector Machine (SVM), K-Nearest

Neighbor (KNN), Näıve Bayes, Logistic Regression, Decision Tree, and Random Forest.

Experimental setup. The classification models are implemented using Sklearn. For

each classifier, this work trains the model with the respective standard settings. Each

item in the dataset is a passing product represented by a 6-dimensional vector whose

values are computed based on six attributes proposed in Section 3.3. The training and

the testing sets in each experiment are separated by different scenarios as described in
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Table 3.4: Accuracy of false-passing product detection model

Classifier Product Precision Recall F1-Score Accuracy

SVM
True-passing 88.16% 97.09% 92.41%

90.04%
False-passing 94.19% 78.36% 85.55%

KNN
True-passing 90.41% 93.97% 92.16%

90.02%
False-passing 89.30% 83.46% 86.28%

Näıve Bayes
True-passing 88.36% 95.25% 91.68%

89.21%
False-passing 90.95% 79.18% 84.66%

Logistic Regression
True-passing 88.75% 95.99% 92.23%

89.91%
False-passing 92.30% 79.81% 85.60%

Decision Tree
True-passing 90.03% 96.26% 93.04%

91.01%
False-passing 92.99% 82.30% 87.32%

Random Forest
True-passing 89.81% 95.00% 92.33%

90.16%
False-passing 90.83% 82.12% 86.26%

Section. 3.5.3. The experiments are conducted on a desktop with Intel Core i5 2.7GHz,

8GB RAM.

3.6 Experimental Results

3.6.1 Accuracy Analysis (RQ1)

As shown in Table 3.4, Clap is highly effective in detecting false-passing products for all

the studied classifiers. The average accuracy for all six classifiers is about 90%. This

figure indicates that Clap can correctly detect 9 out of 10 products to be true-passing or

false-passing . The average F1-scores of true-passing and false-passing product detection

are also high, about 92% and 86%, respectively. Furthermore, the average Recall for

false-passing product detection is about 81%. In other words, if there are 10 false-passing

products, 8 of them are correctly detected. Meanwhile, this figure for true-passing product

classification is approximately 96%, which demonstrates that almost true-passing products

can be accurately detected.

Among the studied classifiers, Decision Tree has the best Accuracy (91.01%). This indi-
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Table 3.5: Mitigating the false-passing products’ negative impact on FL performance

Metric
Ranking

formula

VarCop SBFL

Original Removing FPs
Adding tests

for FPs
Original Removing FPs

Adding tests

for FPs

Rank

Tarantula 3.35 2.52 2.22 5.10 4.75 4.53

Ochiai 2.39 2.23 2.28 3.00 2.77 2.86

Op2 4.31 4.18 4.33 7.03 6.84 6.96

Barinel 3.69 2.83 2.91 5.10 4.74 4.53

Dstar 2.55 2.14 2.19 3.06 2.91 2.98

EXAM

Tarantula 1.35 1.10 1.00 1.89 1.86 1.82

Ochiai 1.02 1.01 0.97 1.12 1.09 1.11

Op2 1.40 1.38 1.40 2.29 2.24 2.27

Barinel 1.46 1.21 1.22 1.89 1.86 1.82

Dstar 1.01 0.94 0.90 1.14 1.09 1.12

cates that Decision Tree most effectively separates true-passing and false-passing products

in a set of passing products. Meanwhile, SVM obtains the highest false-passing product

detection Precision and true-passing product classification Recall. This demonstrates that

compared to the other classifiers, although SVM can detect fewer numbers of false-passing

products (the SVM’s Recall on false-passing product detection is slightly lower than the

other classifiers’ results), it more precisely predicted false-passing products (its Precision

on false-passing product detection is higher than the others classifiers). At the same time,

it also less erroneously detected true-passing products (higher Recall on true-passing prod-

uct detection). In fact, misleadingly detecting true-passing products can cause missing

useful information in FL procedure and it could negatively affect FL performance. Thus,

for the studied dataset, SVM is the safest and most suitable for Clap, and SVM is used

for the following experiments.

3.6.2 Mitigating Impact of False-passing Products on Fault Localization

(RQ2)

Table 3.5 shows the performance of the state-of-the-art variability fault localization tech-

niques in three settings, the original performance and the FL performance after applying

the mitigation methods: removing false-passing products and adding tests for false-passing

products. In this experiment, Clap used SVM to detect false-passing products.
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As shown in Table 3.5, removing “noises” caused by false-passing products helps both

VarCop and SBFL obtain better performance compared to when they are applied on the

original testing information. Specifically, when false-passing products are detected and re-

moved, the performance of the VarCop improved up to 25% in Rank and 19% in EXAM,

also these improvements of SBFL are 8% and 3%, respectively. Indeed, the presence of

false-passing products could lower the suspicious scores of the incorrect statements. The

reason is that these products not only decrease the ratio of failing and passing products

containing the buggy statements but also decrease the ratio of failed tests and passed tests

executed by these statements. This causes confusion for the FL techniques which often

distinguish the incorrect statements from the others based on the number of failing/pass-

ing products, as well as the number of failed/passed test cases. Therefore, eliminating

false-passing products can help to improve the performance of FL techniques.

Listing 3.1: A variability bug in the feature DailyLimit of system BankAccountTP

1 boolean update(int x){
2 int newWithdraw = withdraw;
3 if (x < 0){
4 newWithdraw += x--;
5 //Patch: x-- => x
6 if (newWithdraw < DAILY_LIMIT) {
7 return false;
8 }
9 }

10 //...
11 }

Listing 3.1 shows a variability bug (line 4) in the BankAccountTP. The system is sampled

into 34 products for testing. After testing, the bug is revealed in 2 products, i.e., there are

2 failing products and 32 passing products. By using the program spectra of all of these 34

products for localizing fault, VarCop ranks the buggy statement at 7th and SBFL ranks

it at 5th. However, among the passing products, there are 14 false-passing products. After

detecting and removing false-passing products, FL performance of VarCop and SBFL is

improved 30% and 40%, respectively. Specifically, VarCop ranks the bug at 5th and SBFL

ranks it at 3rd. In this case, Clap correctly predicted 13 products as false-passing . As a

result, a large number of products, which contain the bug and are incorrectly considered

as passing products, have been removed. Moreover, the results showed that by removing

false-passing products, 52 coincidentally passed tests in these products are also removed.

Therefore, the buggy statement becomes more distinguishable from the other statements

of the system in terms of both product-based and test case-based assessment.
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Additionally, when the products predicted as false-passing are further tested by better qual-

ity test suites, FL techniques have more useful information to effectively detect the faults.

Specifically, when more tests are added for further testing false-passing products, the

performance of VarCop is improved up to 34% in Rank and 26% in EXAM, also these

figures of SBFL are 11% and 4% compared to that they are applied on the original testing

information. In Listing 3.1, after adding new tests for detected false-passing products,

the bug is revealed in 2 more products, increasing the number of failing products from

2 to 4. By using the spectra of these 4 failing products and 18 predicted true-passing

products of the systems, both VarCop and SBFL could rank the bug at 3rd, which is

also better than directly removing all 13 detected false-passing products.

Listing 3.2: A variability bug in the feature ExamDataBaseImpl of system ExamDB

1 public boolean consistent(){
2 for (int i = 0; i < students.length; i--) {
3 //Patch: i-- => i++
4 if (students[i] != null && !students[i].backedOut && students[i].points < 0) {
5 return false;
6 }
7 }
8 return true;
9 }

However, in some cases, the FL performance after adding new (failed) tests for false-

passing products could be worse than that when removing all of the detected false-passing

products. The reason is that besides the added tests which are failed, the original test

suites of the false-passing products already contain test cases which coincidentally passed

(unreliable passed tests). Such tests also produce noises and negatively affect FL per-

formance. In Listing 3.2, the bug (line 2) is ranked 9th, 3rd, and 5th by SBFL in the

original setting and the two mitigation settings. By adding tests to the detected false-

passing products, the buggy statement’s rank is worse than that of removing all of these

products (5th vs. 3rd). In this case, two false-passing products are detected and via

added test cases, the bug is revealed in these products. However, in their test suites,

there are 15 coincidentally passed tests which executed the faults but cannot reveal the

failure. Consequently, using the program spectra of these products with the original test

suites and added tests decreased the suspicious score of the buggy statement 0.01 and this

causes its rank becomes worse. For these false-passing products, an analysis to remove

the unreliable passed tests and add new effective test cases should be designed to help FL
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Table 3.6: Impact of different experimental scenarios

Edition Product Precision Recall F1-Score Accuracy

System-based
True-passing 85.51% 92.16% 89.15%

88.44%
False-passing 89.42% 85.83% 86.83%

Version-based
True-passing 88.16% 97.09% 92.41%

90.04%
False-passing 94.19% 78.36% 85.55%

Product-based
True-passing 87.53% 96.97% 92.01%

89.70%
False-passing 94.27% 78.26% 85.52%

Within-system
True-passing 88.73% 96.29% 92.21%

92.29%
False-passing 96.12% 87.02% 91.16%

techniques improve their performance, and this is left for future work.

3.6.3 Sensitivity Analysis (RQ3)

Impact of evaluation scenarios

Table 3.6 shows the false-passing product detection performance of Clap with SVM in

four scenarios by different degrees of relevance of the training and testing data: System-

based, Version-based, Product-based, and Within-system editions. Overall, the more

relevant training and testing data, the better performance of the false-passing product

detection model. Specifically, in the System-based edition, the training and testing data are

the least relevant since the testing set contains the systems which are totally different from

the training set. In this edition, the average classification accuracy is 88.44%. Meanwhile,

in the Within-system edition, the training and testing data are the most relevant since

both the training and testing data contain products in the buggy versions of the same

system. Thus, these products could share some similar characteristics about the programs

and tests. Intuitively, Clap can better capture these attributes and better detect false-

passing products. Specially, the performance of Clap in the Within-system edition is

92.29% in Accuracy and 96.12% in false-passing product prediction Precision, which are

higher than those of System-based edition about 4% and 7%, respectively.

The detail performance of Clap in each system in the System-based edition and Within-

system edition are shown in Table 3.7 and Table 3.8, respectively. For the System-based

61



Table 3.7: Clap’s performance on each system in system-based edition

System Product Precision Recall F1-Score Accuracy

BankAccountTP
True-passing 89.43% 99.14% 94.04%

94.13%
False-passing 99.17% 89.73% 94.21%

Elevator
True-passing 60.25% 91.83% 72.76%

74.23%
False-passing 92.86% 63.69% 75.56%

Email
True-passing 91.19% 84.51% 87.72%

86.95%
False-passing 82.50% 89.95% 86.06%

ExamDB
True-passing 100.00% 89.58% 94.50%

92.77%
False-passing 80.89% 100.00% 89.44%

GPL
True-passing 87.47% 94.66% 90.92%

87.71%
False-passing 88.29% 74.82% 81.00%

ZipMe
True-passing 96.84% 91.51% 94.10%

94.23%
False-passing 91.88% 96.98% 94.36%

Table 3.8: Clap’s performance on each system in within-system edition

System Product Precision Recall F1-Score Accuracy

BankAccountTP
True-passing 96.28% 98.23% 97.25%

97.39%
False-passing 98.40% 96.34% 97.36%

Elevator
True-passing 72.22% 92.86% 81.25%

85.71%
False-passing 95.83% 82.14% 88.46%

Email
True-passing 90.58% 97.66% 93.99%

92.98%
False-passing 96.67% 87.00% 91.58%

ExamDB
True-passing 98.04% 100.00% 99.01%

98.70%
False-passing 100.00% 96.30% 98.12%

GPL
True-passing 86.74% 97.52% 91.81%

88.48%
False-passing 94.00% 70.71% 80.54%

ZipMe
True-passing 88.54% 91.45% 89.97%

90.46%
False-passing 92.26% 89.60% 90.91%
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edition, Clap obtained the best performance in BankAccountTP and ZipMe systems. For

the Within-system edition, Clap correctly detected most of true-passing and false-passing

products in the buggy versions of BankAccountTP and ExamDB systems. Meanwhile, in

both editions, the accuracy of Clap in the buggy versions of Elevator is the lowest. One

of the reasons is the existence of flaky tests in their test suites, which negatively affect the

model in both the training and testing phases. The impact of such tests on the training

phase is discussed in Section. 3.6.3.

In addition, Clap obtained better false-passing product detection Recall in the System-

based edition (86%) compared to the Version-based edition and Product-based edition

(about 78%), although these two later settings have better accuracy. This demonstrates

that for the System-based edition, a product has a higher probability to be predicted as

a false-passing product. This is because for the false-passing products of some systems,

their values in several attributes are significantly smaller than those figures in the products

of the other systems. Consequently, once Clap learns from these small values, and then

predicts new passing products, more products will be predicted as false-passing products.

For example, the fault diagnosability (DDU’) attribute, the average value of the false-

passing products of system Email is 0.81, while this figure of system ExamDB is only

0.6. If the model learns from products of system ExamDB and then predicts products

of system Email, many products of this system, including true-passing products, could

be predicted as false-passing products. As a result, the System-based edition obtained

higher false-passing product detection Recall, yet lower true-passing product classification

Precision compared to the Version-based edition and the Product-based edition.

The proposed approach performed stably in the Version-based and Product-based edi-

tions. The reason is that the data separation methods in these two scenarios are quite

similar. The only difference is that in the Product-based edition, the training and test-

ing sets could contain the products in the same buggy versions. Thus, the detection

performance of Clap in the Version-based and Product-based editions is quite similar.

Impact of training data sizes

Table 3.9 shows the performance of Clap by the training data size with SVM. In general,

the larger the training data set, the better performance of Clap. If the training set

contains the buggy versions of only one system, Clap’s Accuracy is 82.60% and its false-

passing product classification Precision is 74.9%. When the training data increases to

63



Table 3.9: Impact of different training data sizes (the number of systems)

#System Product Precision Recall F1-Score Accuracy

1
True-passing 92.02% 81.88% 86.65%

82.60%
False-passing 74.90% 93.19% 83.05%

2
True-passing 96.82% 63.07% 76.38%

78.47%
False-passing 68.18% 97.44% 80.23%

3
True-passing 95.37% 76.90% 85.14%

85.19%
False-passing 77.03% 95.40% 85.24%

4
True-passing 90.18% 81.33% 85.53%

84.81%
False-passing 79.48% 89.10% 84.02%

5
True-passing 91.19% 84.51% 87.72%

86.95%
False-passing 82.50% 89.95% 86.06%

five systems, the figures of Clap are improved by about 5% and 7%, respectively. This is

reasonable because by learning from more data, Clap can observe and recognize better

false-passing and true-passing products.

However, if added training data contains noises, it could decrease the performance of

Clap. For example, the Accuracy of Clap dropped from 82.60% to 78.47% when the

training set is increased from one to two systems. This figure also slightly declined, about

0.4%, when the training set increased from three to four systems. The reason is that in

the added systems, there are several “flaky” tests in their buggy versions. The results

of these tests are inconsistent, sometimes they are passed and sometimes failed without

any code changes [143]. For example, some tests invoked random() function to get a

random number, and then the tests failed due to the numbers are generated differently

in each run, not because of the bugs in the system. Due to their inconsistent test results,

these tests might create noises for false-passing product detection tools. Consequently,

the performance of Clap in these cases are decreased.

3.6.4 Intrinsic Analysis (RQ4)

To study the impact of each attribute set on Clap’s performance, several variants of

Clap were built, each of them enables a single attribute set: product implementation,

test adequacy, and test effectiveness. In this experiment, these variants of Clap were
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Table 3.10: Impact of attributes on Clap’s performance

System Attributes Product Precision Recall F1-Score Accuracy

GPL

Product

implementation

True-passing 84.69% 87.71% 86.17%
81.52%

False-passing 74.80% 69.69% 72.15%

Test

adequacy

True-passing 80.45% 99.74% 89.06%
83.92%

False-passing 99.07% 53.69% 69.64%

Test

effectiveness

True-passing 78.74% 96.59% 86.76%
80.64%

False-passing 88.50% 50.18% 64.05%

All
True-passing 87.47% 94.66% 90.92%

87.71%
False-passing 88.29% 74.82% 81.00%

ZipMe

Product

implementation

True-passing 86.09% 99.16% 92.16%
91.53%

False-passing 99.00% 83.82% 90.78%

Test

adequacy

True-passing 76.82% 93.54% 84.36%
82.57%

False-passing 91.61% 71.50% 80.32%

Test

effectiveness

True-passing 87.39% 48.92% 62.73%
70.79%

False-passing 96.84% 91.51% 94.10%

All
True-passing 96.84% 91.51% 94.10%

94.23%
False-passing 91.88% 96.98% 94.36%

applied in setting cross-system edition of the two largest systems, GPL and ZipMe. Note

in this experiment, Clap used SVM, the impact of different classifiers and different setting

editions on Clap’s performance has been shown in Section 3.6.1 and Section 3.6.3.

The product implementation attributes help Clap achieve better performance compared

to the test adequacy and test effectiveness attributes. The reason is that the product

implementation attributes directly provide information about buggy statements in the

products. The model using these attributes can capture the information about the bug-

giness of products, and have better performance. As seen in Table 3.10, for GPL, by

using the product implementation attributes, Clap obtains higher false-passing prod-

uct detection Recall than the others. Specifically, only using these attributes, Clap

obtained 69.69% in false-passing product detection Recall, while these figures of Clap

with the test adequacy attributes and test effectiveness attributes are just 53.69% and

50.18%, respectively. For ZipMe, by using the product implementation attributes, Clap

can correctly detect more than 8 false-passing products, while this figure when using the

test adequacy attributes is only 7. Although, using test effectiveness attributes, Clap’s

false-passing product detection Recall is better than using the product implementation
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attributes, Clap’s true-passing product detection Recall is much lower, only 48.92%.

Based on only test quality attributes (the test adequacy or test effectiveness), the model

faces difficulties on distinguishing true-passing and false-passing products. As a result,

the Clap’s variants with these attribute have a very high true-passing product detection

Recall but low false-passing products detection Recall or vice versa. Indeed, test quality is

an important factor for Clap to detect true-passing and false-passing products. However,

the low quality of the test suite is just a sign showing that the test result is less reliable

but it cannot confirm the bugginess of the product. Thus, in some cases, using only test

quality attributes cannot help to detect false-passing products.

As expected, Clap obtained the best results when the failure indications are measured

based on all three aspects: product implementation, test adequacy, and test effectiveness.

By using all of these attributes, Clap has more comprehensive information to evaluate

the bugginess in the product’s source code, as well as the reliability of the product’s overall

test result. Thus, all of these attributes should be used together in Clap to achieve the

best performance.

3.6.5 Time Complexity (RQ5)

On average, Clap took 53 seconds to measure attributes of the passing products of a

buggy version (about 2.5 seconds/product). Specifically, each buggy version of ExamDB

took only 3 seconds, meanwhile this figure for each version of ZipMe is 192 seconds.

Indeed, running time of Clap depends on the number of sampled products of each system,

the number of test cases of each product, and the system’s size. The reason is that the

proposed attributes are calculated on each passing product of the system. Also, they

are measured based on the failure indications investigated from all the failed tests of the

failing products of the buggy version. Thus, ExamDB, which contains the least number

of sampled products, has the smallest running time. Meanwhile, ZipMe has the largest

running time since it is sampled into a large number of products, each product is tested

by a large number of test cases, and this is also the largest system.

3.6.6 Threats to Validity

The main threats to the validity of this work are consisted of internal, external, and

construct validity threats.

66



Threats to internal validity mainly lie in the correctness of the ground truth which is

labeled for the passing products. To mitigate this threat, this work applied a systematic

process to label these products. In the step which requires manual investigation and test

generation, I made every effort to carefully investigate the products. Another threat is

that the ratio of false-passing and true-passing in the benchmark might be different from

the ratio in practice. To address this threat, I plan to collect real-world false-passing and

true-passing products in larger SPL systems to evaluate the proposed technique.

Threats to external validity mainly lie in the benchmark used in the experiments.

Although the dataset uses the systems which are widely used in the existing work, this

dataset only contains artificial bugs of Java SPL systems, so the similar results cannot

be concluded for real-world faults and SPL systems in other programming languages. In

addition, another threat may come from the quality of the products’ test suites. For

instance, the product could contain low quality test cases (e.g., flaky tests). To mitigate

this threat, this work chose the dataset containing a large number of buggy products with

a diversity of artificial faults and each products are tested by a large number of test cases.

Also, the dataset contains both single-bug and multiple-bug buggy systems. To address

these threats, I plan to collect more real-world variability bugs in larger SPL systems to

evaluate the proposed technique.

Threats to construct validity mainly lie in the rationality of the assessment metrics.

To reduce this threat, this work chose the metrics which are widely used in the related

studies [139]. For evaluating the approach of detecting false-passing products, this work

uses common metrics in classification problem: Precision, Recall, F1-Score, and Accuracy.

For evaluating how Clap helps to mitigate the negative impact of false-passing products

on FL performance, the most popular metrics in FL studies, Rank and EXAM are used.

For assessing the performance of the classifiers, this work follows the instructions from

the related studies [139, 144] for choosing the value of k = 5 for k-fold cross-validation.

Another threat may come from the selected SBFL metrics. To reduce this threat, the five

most popular SBFL metrics, which are widely used in FL studies [4, 25], are chosen.

3.7 Summary

In an SPL system, variability bugs can cause failures in certain products (buggy prod-

ucts). However, these buggy products could be incorrectly considered as passing products

due to the ineffectiveness of their test suites in detecting the bugs. The buggy products
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which still passed all the tests in their test suits are called false-passing products. The

empirical study has shown that false-passing products can produce negative impacts on

FL performance. This chapter introduces Clap, a novel approach to detect false-passing

products in SPL systems. The key idea of Clap is that the stronger failure indications in

the passing product, the more likely the product is false-passing . The failure indications

are derived from the failing products of the system based on products’ implementation

and products’ test quality. Then a passing product is measured according to these indica-

tions to determine its possibility to be false-passing . The experimental results on a large

dataset of 823 buggy SPL systems with 14,191 false-passing products and 22,555 true-

passing products show that Clap can effectively classify false-passing and true-passing

products of the SPL systems, with the average Accuracy of more than 90%. In different

experimental scenarios, the precision of false-passing product detection by Clap is up to

96%. Furthermore, this chapter proposes simple and effective methods to mitigate the

negative impact of false-passing products on fault localization performance. These meth-

ods can effectively help the state-of-the-art FL techniques improve their performance by

up to 34%. This shows thatClap can greatly mitigate the negative impact of false-passing

products on localizing variability bugs and help developers find bugs much faster.

This work was published in the journal of Information and Software Technology in 2023.

Nguyen, Thu-Trang, Kien-Tuan Ngo, Son Nguyen, and Hieu Dinh Vo. “Detecting false-

passing products and mitigating their impact on variability fault localization in software

product lines.” Information and Software Technology 153 (2023): 107080. (ISI/Q1)
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Chapter 4

Variability Fault Localization
This chapter presents VarCop, a novel and effective variability FL approach. Firstly,

this chapter shows several observations about variability faults. Next, this chapter for-

mulates feature interaction which is the root cause of variability failures and introduces

an approach to identify suspicious statements. Then, this chapter discusses a solution

for measuring the suspiciousness scores of the identified suspicious statements to find the

statements that are the most likely to be buggy.

4.1 Introduction

The variability that is inherent to SPL systems challenges quality assurance activities [3,

12–15]. In comparison with the single-system engineering, fault detection and localization

through testing in SPL systems are more problematic, as a bug can be variable, which can

only be exposed under some combinations of the system features [12, 16]. Specially, there

exists a set of the features that must be selected to be on and off together to necessarily

reveal the bug. Due to the presence/absence of the interaction among the features in

such set, the buggy statements behave differently in the products where these features

are on and off together or not. Hence, the incorrect statements can only expose their

bugginess in some particular products, yet cannot in the others. Specially, in an SPL

system, variability bugs only cause failures in certain products, and the others still pass

all their tests. This variability property causes considerable difficulties for localizing this

kind of bugs in SPL systems.

Despite the importance of variability fault localization, the existing FL approaches [4, 6, 25]

are not designed for this kind of bugs. These techniques are specialized for finding bugs in

a particular product. For instance, to isolate the bugs causing failures in multiple products

of a single SPL system, the slice-based methods [25–27] could be used to identify all the

failure-related slices for each product independently of others. Consequently, there are

multiple sets of (large numbers of) isolated statements that need to be examined to find

the bugs. This makes the slice-based methods [25] become impractical in SPL systems.
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In addition, the state-of-the-art technique, SBFL [4, 28–31] can be used to calculate the

suspiciousness scores of code statements based on the test information (i.e., program

spectra) of each product of the system separately. For each product, it produces a ranked

list of suspicious statements. As a result, there might be multiple ranked lists produced

for a single SPL system which is failed by variability bugs. From these multiple lists,

developers cannot determine a starting point to diagnose the root causes of the failures.

Hence, it is inefficient to find variability bugs by using SBFL to rank suspicious statements

in multiple variants separately.

Another method to apply SBFL for localizing variability bugs in an SPL system is that

one can treat the whole system as a single program [5]. This means that the mechanism

controlling the presence/absence of the features in the system (e.g., the preprocessor direc-

tives #ifdef) would be considered as the corresponding conditional if-then statements

during the localization process. By this adaptation, a single ranked list of the statements

for variability bugs can be produced according to the suspiciousness of each statement.

Note that, this work considers the product-based testing [32, 33]. Specially, each product

is considered to be tested individually with its own test set. Additionally, a test, which is

designed to test a feature in domain engineering, is concretized to multiple test cases ac-

cording to products’ requirements in application engineering [32]. Using this adaptation,

the suspiciousness of the statement is measured based on the total numbers of the passed

and failed tests executed by it in all the tested products. Meanwhile, the characteristics

including the interactions between system features and the variability of failures among

products are also useful to isolate and localize variability bugs in SPL systems. However,

these kinds of important information are not utilized in the existing approaches.

This chapter proposes VarCop, a novel fault localization approach for variability bugs.

The key ideas of VarCop is that variability bugs are localized based on (i) the interaction

among the features which are necessary to reveal the bugs, and (ii) the bugginess exposure

which is reflected via both the overall test results of products and the detailed result of

each test case in the products.

For a buggy SPL system, VarCop detects sets of the features which need to be selected

on/off together to make the system fail by analyzing the overall test results (i.e., the state

of passing all tests or failing at least one test) of the products. This dissertation calls

each of these sets of the feature selections a Buggy Partial Configuration (Buggy PC).

Then, VarCop analyzes the interaction among the features in these Buggy PCs to isolate
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the statements which are suspicious. In VarCop, the suspiciousness of each isolated

statement is assessed based on two criteria. The first criterion is based on the overall

test results of the products containing the statement. By this criterion, the more failing

products and the fewer passing products where the statement appears, the more suspicious

the statement is. Meanwhile, the second one is assessed based on the suspiciousness of

the statement in the failing products which contain it. Specially, in each failing product,

the statement’s suspiciousness is measured based on the detailed results of the products’

test cases. The idea is that if the statement is more suspicious in the failing products

based on their detailed test results, the statement is also more likely to be buggy in the

whole system.

This work conducted experiments to evaluate VarCop in both single-bug and multiple-

bug settings on a dataset of 1,570 versions (cases) containing variability bug(s) [5]. The

performance of VarCop is compared with the state-of-the-art approaches including

(SBFL) [4, 28–31], the combination of the slicing method and SBFL (S-SBFL) [120, 121],

and Arrieta et al. [6] using 30 most popular SBFL ranking metrics [4, 28, 29]. The ex-

perimental results show that VarCop significantly outperformed the baselines in all the

studied metrics.

4.2 Motivating Example

This section illustrates the challenges of localizing variability bugs and motivate the so-

lution via an example.

4.2.1 An Example of Variability Faults in Software Product Lines

Listing 4.1 shows a simplified variability bug in Elevator System [5]. The overall test

results of the sampled products are shown in Table 4.1. In Listing 4.1, the bug (incorrect

statement) at line 31 causes the failures in products p6 and p7.

Listing 4.1: An example of variability fault in Elevator System

1 int maxWeight = 2000, weight = 0;
2

3 //#ifdef Empty
4 void empty(){ persons.clear();}
5 //#endif
6 void enter(Person p){
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Table 4.1: The sampled products and their overall test results

P C Base Empty Weight TwoThirdsFull Overloaded

p1 c1 T F T F F

p2 c2 T T T F F

p3 c3 T T F F F

p4 c4 T F T T F

p5 c5 T F T T T

p6 c6 T T T F T

p7 c7 T F T F T

P and C are the sampled sets of products and configurations.

p6 and p7 fail at least one test (failing products). Other products pass

all their tests (passing products).

7 persons.add(p);
8 //#ifdef Weight
9 weight += p.getWeight();

10 //#endif
11 }
12 void leave(Person p){
13 persons.remove(p);
14 //#ifdef Weight
15 weight -= p.getWeight();
16 //#endif
17 }
18 ElevState stopAtAFloor(int floorID){
19 ElevState state = Elev.openDoors;
20 boolean block = false;
21 for (Person p: new ArrayList<Person>(persons))
22 if (p.getDestination() == floorID)
23 leave(p);
24 for (Person p : waiting) enter(p);
25 //#ifdef TwoThirdsFull
26 if (weight >= maxWeight*2/3)
27 block = true;
28 //#endif
29 //#ifdef Overloaded
30 if(block == false){
31 if (weight == maxWeight )
32 //Patch: weight >= maxWeight
33 block = true;
34 }
35 //#endif
36 if (block == true)
37 return Elev.blockDoors;
38 return Elev.closeDoors;
39 }

In this system, the total loaded weight of the Elevator cabin is guaranteed under a safety

bound by TwoThirdsFull and Overloaded. TwoThirdsFull is expected to limit the load not

to exceed 2/3 of the elevator’s capacity, while Overloaded ensures the maximum load is

the elevator’s capacity. However, the implementation of Overloaded (lines 30–34) does not

72



behave as specified. If the total loaded weight (weight) of the elevator is tracked, then in-

stead of blocking the elevator when weight exceeds its capacity (weight >= maxWeight),

its actual implementation blocks the elevator only when weight is equal to maxWeight

(line 31). Consequently, if Weight and Overloaded are on (and TwoThirdsFull is off),

even the total loaded weight is greater than the elevator’s capacity, then (block==false)

the elevator still dangerously works without blocking the doors (lines 37–39).

This bug (line 31) is variable (variability bug). It is revealed not in all the sampled

products, but only in p6 and p7 (Table 4.1) due to the interaction among Weight, Over-

loaded, and TwoThirdsFull. Specially, the behavior of Overloaded which sets the value of

block at line 33 is interfered by TwoThirdsFull when both of them are on (lines 27 and

30). Moreover, the incorrect condition at line 31 can be exposed only when Weight =

T, TwoThirdsFull=F, and Overloaded = T in p6 and p7. Hence, understanding the root

cause of the failures to localize the variability bug could be very challenging.

4.2.2 Observations

For an SPL system containing variability bugs, there are certain features that are (ir)relevant

to the failures [12, 76, 132]. In Listing 4.1, enabling or disabling feature Empty does not

affect the failures. Indeed, some products still fail (p6 and p7) or pass their test cases (p1

and p2) regardless of whether Empty is on or off. Meanwhile, there are several features

which must be enabled/disabled together to make the bugs visible. In other words,

for certain products, changing their current configurations by switching the current selec-

tion of anyone in these relevant features makes the resulting products’ overall test results

change. For TwoThirdsFull, switching its current off-selection in the failing product, p7,

makes the resulting product, p5, where TwoThirdsFull = T , behave as expected (Ta-

ble 4.1). The reason is that in p5, the presence of Weight and TwoThirdsFull impacts

Overloaded, and consequently Overloaded does not expose its incorrectness. In fact, this

characteristic of variability bugs has been confirmed by the public datasets of real-world

variability bugs [76, 132]. For example, in the VBDb [76], there are 41/98 bugs revealed

by a single feature and the remaining 57/98 bugs involved 2–5 features. The occurrence

condition of these bugs is relevant to both enabled and disabled features. Particularly, 49

bugs occurred when all of the relevant features must be enabled. Meanwhile, the other

half of the bugs require that at least one relevant feature is disabled.

The impact of features on each other is their feature interaction [12, 69]. The presence
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of a feature interaction makes certain statements behave differently from when the inter-

action is absent. For variability bugs, the presence of the interaction among the relevant

features1 exposes/conceals the bugginess of the statements that cause the unexpected/-

expected behaviors of the failing/passing products [12, 76]. Thus, to localize variability

bugs, it is necessary to identify such sets of the relevant features as well as the interaction

among the features in each set, which is the root cause of the failures in failing products.

In an SPL system containing variability bugs, there might be multiple such sets of the

relevant features. Let consider a particular set of relevant features.

O1. In the features FE which must be enabled together to make the bugs visible,

the statements that implement the interaction among these features provide valuable sug-

gestions to localize the bugs. For instance, in Listing 4.1, FE consists of Weight and

Overloaded, and the interaction between these features contains the buggy statement at

line 31 (s31) in Overloaded. This statement uses variable weight defined/updated by

feature Weight (lines 9 and 15). Hence, detecting the statements that implement the

interaction among the features in FE could provide us valuable indications to localize the

variability bugs in the systems.

O2. Moreover, in the features FD which must be disabled together to reveal the bugs,

the statements impacting the interaction among the features in FE (if the features in FD

and FE are all on), also provide useful indications to help us find bugs. In Listing 4.1,

although the statements from lines 26–27 in TwoThirdsFull (being disabled) are not buggy,

analyzing the impact of these statements on the interaction between Overloaded and

Weight can provide the suggestion to identify the buggy statement. The intuition is that

the features in FD have the impacts of “hiding” the bugs when these features are enabled.

In this example, when Weight, TwoThirdsFull and Overloaded are all on, if the loaded

weight exceeds maxWeight*2/3 (i.e., the conditions at line 26 are satisfied), then block

= true, and the statements from 31–33 (in Overloaded) cannot be executed. As a result,

the impact of the incorrect condition at line 31 is “hidden”. Thus, the impact of the

features in FD (as if they are on) on the interaction among the features in FE should be

considered in localizing variability bugs.

O3. For a buggy SPL system, a statement can appear in both failing and passing products.

Meanwhile, the states of failing or passing of the products expose the bugginess of the

1Without loss of generality, for the cases where there is only one relevant feature, the feature

can impact and interact itself.
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Figure 4.1: VarCop’s Overview

contained buggy statements. Thus, the overall test results of the sampled products can

be used to measure the suspiciousness of the statements. Furthermore, the bugginess

of an incorrect statement can be exposed via the detailed (case-by-case) test results in

every failing product containing the bug. In this example, s31 is contained in two failing

products p6 and p7, and its bugginess is expressed differently via the detailed test results

in p6 and p7. Thus, to holistically assess the suspiciousness of a statement s, the score

of s should also reflect the statement’s suspiciousness via the detailed test results in every

failing product where s contributes to.

Among these observations, O1 and O2 will be theoretically discussed in Section 4.3.2.

Also, the observation O3 is empirically validated by the experiments (Section 4.8).

4.2.3 VarCop Overview

In this dissertation, the problem of variability fault localization is defined in Definition 4.1.

Definition 4.1 (Variability Fault Localization). Given 3-tuple ⟨S, P, R⟩, where:

• S = ⟨S,F, φ⟩ is a system containing variability faults,

• P = {p1, p2, ..., pn} is the set of sampled products, P = PP ∪ PF , where PP and PF

are the sets of passing and failing products of S, and

• R = {R1, R2, ..., Rn} is the set of the program spectra of the products in P , where Ri

is the program spectrum of pi.

Variability Fault Localization is to output the list of the statements in S ranked based on

their suspiciousness to be buggy.
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Based on the observations shown in Section 4.2.2, this chapter proposes VarCop, a

novel variability fault localization approach. For a given buggy SPL system, the input

of VarCop consists of a set of the tested products and their program spectra. VarCop

outputs a ranked list of suspicious statements in three steps (Figure 4.1):

1. First, by analyzing the configurations and the overall test results of the sampled

products, VarCop detects minimal sets of features whose selections (the states of

being on/off ) make the bugs (in)visible. Let us call such a set of selections a Buggy

Partial Configuration (Buggy PC). In Listing 4.1, {Weight = T , Overloaded = T ,

TwoThirdsFull = F} is a Buggy PC .

2. Next, for each failing product, VarCop isolates the suspicious statements which

are responsible for implementing the interaction among the features in each detected

Buggy PC . Specially, the feature interaction implementation is a set of the statements

which these features use to impact each other. For example, in p7, VarCop analyzes

its code to detect the implementation of the interaction among Weight, Overloaded,

and TwoThirdsFull (O1 and O2), and this interaction implementation includes the

statements at lines 9, 15, and 31. Intuitively, all the statements in p7 which have an

impact on these statements or are impacted by them are also suspicious.

3. Finally, the suspicious statements are ranked by examining how their suspiciousness

exposes in both the overall test results of the containing products (product-based sus-

piciousness assessment) and these products’ detailed case-by-case test results (test

case-based suspiciousness assessment). Particularly, for each isolated statement, the

product-based assessment is calculated based on the numbers of the passing and fail-

ing products containing the statement. Meanwhile, the test case-based suspiciousness

is assessed by aggregating the suspiciousness scores of the statement in the failing

products which are calculated based on the detailed results of the tests executed by

the statement. (O3).

4.3 Feature Interaction

This section introduces the feature interaction formulation which can be used to analyze

the root cause of variability faults.
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4.3.1 Feature Interaction Formulation

Different kinds of feature interactions have been discussed in the literature [12, 15, 69, 74].

This work formulates feature interaction based on the impacts of a feature on other fea-

tures. Specially, for a set of features in a product, a feature can interact with the others in

two ways: (i) directly impacting the others’ implementation and (ii) indirectly impacting

the others’ behaviors via the statements which are impacted by all of them. For (i), there

is control/data dependency between the implementation of these features. For example,

in p5, since the statement at line 26 (s26) in φ(TwoThirdsFull) is data-dependent on s9

and s15 in φ(Weight), there is an interaction between Weight and TwoThirdsFull in p5.

For (ii), there is at least one statement which is control/data dependent on a statement(s)

of every feature in the set. For instance, in p5, TwoThirdsFull and Weight interact by

both impacting the statement at line 31. As a result, when these features are all on in a

product, each of them will impact the others’ behaviors.

Without loss of generality, a statement can be considered to be impacted by that statement

itself. Thus, for a set of enabled features F , in a product, there exists an interaction among

these features if there is a statement s which is impacted by the implementation of all

the features in F , regardless of whether s is used to implement these features or not.

Formally, this work defines impact function, Ω, to determine the impact of a statement

in a product.

Definition 4.2 (Impact Function). Given a system S = ⟨S,F, φ⟩, the impact func-

tion is defined as Ω : S × P → 2S. Specially, Ω(s, p) refers to the set of the statements

of S which are impacted by statement s in product p. For a statement s′ in product p,

s′ ∈ Ω(s, p) if s′ satisfies one of the following conditions:

• s′ = s

• s′ is data/control-dependent on s

For the example, Ω(s33, p5) = {s33, s36, s37, s38}. Note that if statement s is not in product

p, then Ω(s, p) = ∅.

Definition 4.3 (Feature Interaction). Given a system S = ⟨S,F, φ⟩, for product p

and a set of features F which are enabled in p, the interaction among the features in F
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exists if and only if the following condition is satisfied:⋂
f∈F

α(f, p) ̸= ∅

where α(f, p) =
⋃

s∈φ(f)Ω(s, p) refers to the set of the statements in p which are impacted

by any statement in φ(f). The implementation of the interaction among features

F in product p is denoted by β(F, p) =
⋂

f∈F α(f, p).

For the example in Listing 4.1, the features Weight and Overloaded interact with each

other in product p7 and the implementation of the interaction includes the statements at

lines 31–33 and 36–38. Note that, without loss of generality, a feature can impact and

interact with itself.

4.3.2 The Root Cause of Variability Failures

This section analyzes and discusses the relation between variability failures in SPL systems

and the enabling/disabling of features. In a buggy SPL system, the variability bugs can be

revealed by set(s) of the relevant features which must be enabled and disabled together

to make the bugs visible. For each set of relevant features, their selections might affect the

visibility of the bugs in the system. For simplicity, this section first analyzes the buggy

system containing a single set of such relevant features. The cases where multiple sets of

relevant features involve in the variability failures will be discussed in the later part.

Let consider the cases where the failures of a system are revealed by a single set of the

relevant features, Fr = FE ∪ FD, where the features in FE and FD must be respectively

enabled and disabled together to make the bugs visible. Specially, the features in FE

and FD must be respectively on and off in all the failing products. From a failing product

p ∈ PF , once switching the current selection of any switchable feature2 in Fr, the resulting

product p′ will pass all its tests, p′ ∈ PP . In this case, the interaction of features in Fr

propagates the impact of buggy statements to the actual outputs causing the failures in

p. The relation between variability bugs (buggy statements) causing the failures in failing

products and the interaction between the relevant features in Fr will be theoretically

discussed as following.

2In configuration c, feature f is switchable if switching f ’s selection, the obtained configura-

tion is valid regarding system’s feature model.
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For a failing product p ∈ PF , the set of the buggy statements in p is denoted by Sb. From
p, disabling any feature fe ∈ FE would produce a passing product p′ ∈ PP . In this case,

every buggy statement s ∈ Sb can be either present or not in p′. First, if s is not in p′

after disabling fe from p, then s ∈ φ(fe) ⊆ α(fe, p). The second case is that s is still in

p′. Due to the absence of fe, s behaves differently from the way it does incorrectly in p,

and p′ passes all its tests. This means, in p, fe has impact on s and/or the statements

impacted by s, Ω(s, p). In other words, α(fe, p) ∩Ω(s, p) ̸= ∅. In p, s and the statements

impacted by s together propagate their impacts to the unexpected outputs in p. Thus,

any change on the statements in Ω(s, p) can affect the bugs’ visibility.

These two above cases show that every incorrect statement s in Sb, only exposes its

bugginess with the presence of all the features in FE . This demonstrates that the features

in FE must interact with each other in p, β(FE , p) =
⋂

fe∈FE
α(fe, p) ̸= ∅. Indeed, if there

exists a feature f ∈ FE which does not interact with the others in FE , α(f, p) ∩ β(FE \
{f}, p) = ∅, the incorrect behaviors of s will only be impacted by either f or the interaction

among the features in {FE \ f}. As a result, s will not require the presence of both f

and {FE \ f} to reveal its bugginess. Moreover, since every fe ∈ FE has impacts on the

behaviors of all the buggy statements, ∀s ∈ Sb, ∀fe ∈ FE ,Ω(s, p) ∩ α(fe, p) ̸= ∅, the
interaction among the features in FE also has impacts on the behaviors of every buggy

statement, ∀s ∈ Sb, Ω(s, p) ∩ β(FE , p) ̸= ∅. In other words, the features FE interact with

each other in p, and the interaction implementation impacts the visibility of the failures

caused by every buggy statement. Hence, the statements which implement the interaction

among the features in FE are valuable suggestions to localize the buggy statements. This

theoretically confirms the observation O1.

Similarly, from p, turning on any disabled feature fd ∈ FD, the resulting product p′′ also

passes all its tests. This illustrates that in p′′, the behaviors of every buggy statement

s in Sb are impacted by the presence of fd, thus the incorrect behaviors of s cannot

be exposed. Formally, ∀s ∈ Sb,Ω(s, p) ∩ α(fd, p
′′) ̸= ∅. Intuitively, fd has impacts

on interaction implementation of FE in p as well as the impact of this interaction on

Ω(s, p). In other words, the interaction among FE ∪ FD impacts the behaviors of the

buggy statements, ∀s ∈ Sb, Ω(s, p) ∩ β(FE ∪ FD, p
′′) ̸= ∅. Hence, investigating the

interaction implementation of the features in FD and FE (if they were all enabled in a

product) can provide us useful indications to find the incorrect statements. This explains

the observation O2.
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Overall, the interaction among the relevant features in Fr = FE ∪ FD reveals/hides

the bugs by impacting the buggy statements and/or the statements impacted by the

buggy ones in the products. Illustratively, this interaction implementation propagates

the impact of all the buggy statements to the output of the failed tests in a failing

product. This means that the buggy statements are contained in the set of statements

which are impacted by or have impacts on the interaction implementation of the relevant

features. Thus, identifying the sets of the relevant features whose interaction can affect

the variability bugs visible/invisible and the implementation of the interaction is necessary

to localize variability bugs in SPL systems.

In general, variability bugs in a system can be revealed by multiple sets of relevant features.

In these cases, the visibility of the bugs might not be clearly observed by switching the

selections of features in one set of relevant features. For instance, Fr and F ′
r are two sets of

relevant features whose interaction causes the failures in the system. Once switching the

selection of any feature in Fr, the implementation of the interaction among the features

in Fr is not in the resulting product p′. Meanwhile, p′ can still contain the interaction

among the features in F ′
r. Thus, p

′ can still fail some tests. However, if Fr and/or F ′
r or

even their subsets can be identified, by examining the interaction among the identified

set(s) of features, the bugs can be isolated. More details will be described and proved in

the next section.

In spite of the importance of the relation between variability failures and relevant fea-

tures, this information is not utilized by existing studies such as SBFL and S-SBFL.

Consequently, their resulting suspicious spaces are often large. Meanwhile, by Arrieta et

al. [6], SBFL is adapted to localize bugs at the feature-level. Particularly, each sampled

product is considered as a test (i.e., passed tests are passing products, and failed tests are

failing products), and the spectra record the feature selections in each product. However,

SBFL is used to localize the buggy features. By this method, all the statements in the

same feature have the same suspiciousness level. Thus, this approach could be ineffective

for localizing variability bugs at the statement-level. This will be empirically illustrated

in the experimental results (Section 4.8).

4.4 Buggy Partial Configuration Detection

This section introduces the notions of Buggy Partial Configuration (Buggy PC) and Suspi-

cious Partial Configuration (Suspicious PC). Specially, Buggy PCs are the partial config-
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urations whose interactions among the corresponding features are the root causes making

variability bugs visible in a buggy system. In general, Buggy PCs can be detected after

testing all the possible products of the system. However, verifying all those products is

infeasible in practice. Meanwhile, Suspicious PCs are the detected suspicious candidates

for the Buggy PCs which can be practically computed using the sampled products.

4.4.1 Buggy Partial Configuration

For a buggy system S = ⟨S,F, φ⟩, where all the possible configurations of S, C, is

categorized into the non-empty sets of passing (CP ) and failing (CF ) configurations,

CP ∪CF = C, a Buggy Partial Configuration (Buggy PC ) is the minimal set of feature

selections that makes the bugs visible in the products. In Listing 4.1, the only Buggy PC

is B = {Weight = T, TwoThirdsFull = F,Overloaded = T}.

Definition 4.4 (Buggy Partial Configuration (Buggy PC)). Given a buggy system

S = ⟨S,F, φ⟩, a buggy partial configuration, B, is a set of feature selections in S that

has both the following Bug-Revelation and Minimality properties:

• Bug-Revelation. Any configuration containing B is corresponding to a failing prod-

uct, ∀c ∈ C, c ⊇ B =⇒ c ∈ CF .

• Minimality. There are no strict subsets of B satisfying the Bug-Revelation prop-

erty, ∀B′ ⊊ B =⇒ ¬(∀c ∈ C, c ⊇ B′ =⇒ c ∈ CF ).

Bug-Revelation. This property is equivalent to that all the passing configurations do

not contain B. Indeed,

∀c ∈ C, c ⊇ B =⇒ c ∈ CF

⇔ ∀c ∈ C, [c ̸⊇ B ∨ c ∈ CF ]

⇔ ∀c ∈ C, [c ̸⊇ B ∨ c ̸∈ CP ]

⇔ ∀c ∈ C, c ∈ CP =⇒ c ̸⊇ B

For a set of feature selections B′, if there exists a passing configuration containing B′,

∃c ∈ CP ∧ c ⊃ B′, the interaction among the features in B′ in the corresponding product
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p cannot be the root cause of any variability bug. This is because there is no unex-

pected behavior caused by this interaction in the passing product p3. Hence, investigat-

ing the interaction between them might not help us localize the bugs. For example, B′ =

{Empty = T,Weight = T} is a subset of the failing configuration c6, however it is not

considered as a Buggy PC , because B′ also is a subset of c2 which is a passing configura-

tion. Indeed, in every product, the interaction between Empty and Weight, which does

not cause any failure, should not be investigated to find the bug. Thus, to guarantee that

the interaction among the features in a Buggy PC is the root cause of variability bugs,

the set of feature selections needs to have Bug-Revelation property.

Minimality. If a set B holds the Bug-Revelation property but not minimal, then there

exists a strict subset B′ of B (B′ ⊊ B) that also has Bug-Revelation property. However,

for any p ∈ PF whose configuration contains both B and B′, to detect all the bugs related

to either B or B′, the smaller one, B′, should still be examined rather than B. The reason

is, in p, the bugs related to both B and B′ are all covered by the implementation of the

interaction among the features in B′.

Particularly, let B′ = F ′
E ∪ F ′

D and B = FE ∪ FD, where F ′
E , F ′

D, FE , and FD are

the sets of enabled and disabled features in B′ and B, respectively. Since B′ ⊂ B, and

F ′
E ∩F

′
D = FE ∩FD = ∅, so F ′

E ⊆ FE and F ′
D ⊆ FD. For the enabled features in FE and

F ′
E , the failures in p can be caused by the interactions among the enabled features in FE

or F ′
E . The implementation of the interactions among the enabled features in FE and F ′

E

in p are β(FE , p) =
⋂

f∈FE
α(f, p) and β(F ′

E , p) =
⋂

f ′∈F ′
E
α(f ′, p), respectively. Then,

β(FE , p) ⊆ β(F ′
E , p) because F ′

E ⊆ FE . As a result, the incorrect statements related to

β(FE , p) are all included in β(F ′
E , p). Similarly, for the sets of the disabled features, the set

of the statements in p related to all the features of F ′
D also includes the statements related

to all the features of FD. In consequence, by identifying the interaction implementation

of the features in B′, the bugs which are related to both B and B′ can all be found.

Furthermore, if both B and B′ are related to the same bug(s), the larger set could

contain bug-irrelevant feature selections which can negatively affect the FL effective-

ness. For example, both the entire configuration c6 and its subset {TwoThirdsFull =

F,Overloaded = T,Weight = T} has Bug-Revelation property. Nevertheless, the inter-

action among TwoThirdsFull, Overloaded, and Weight, which indeed causes the failures

3Assuming that the test suite of each product is effective in detecting bugs. This means the

buggy products must fail.
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in p6, should be investigated instead of the interaction among the features in the entire

c6. This configuration contains the bug-irrelevant selection, Empty = T . As a result,

Buggy PCs need to be minimal.

Buggy PC Detection Requirement. All possible configurations of a system are very

rarely available for the QA process. Thus, in a buggy system, the sampled set is used

to detect the Buggy PCs . Assuming that D is the set of the candidates for Buggy PCs

which is detected by an FL approach. For any D ∈ D, all the statements which implement

the interaction among the features in D and the statements which have impact on that

interaction implementation (Section 4.3.2) are suspicious. Thus, for a Buggy PC B, to

avoid missing related buggy statements S, the FL method must ensure that S is covered

by the suspicious statements identified from at least one candidate: there must be at

least one candidate in D which is a subset of B, ∃D ∈ D, D ⊆ B. Let us call this the

effectiveness requirement.

Indeed, if there exists D ∈ D, such that D ⊆ B, then in a product p whose configuration

contains B (apparently contains D), the interaction implementation of the features in D

covers all the statements implementing the interaction of the features in B, β(D, p) ⊇
β(B, p). As a result, the suspicious statements set of D contains both the interaction

implementation β(B, p) and the statements which have impact on this interaction in p.

In other words, the suspicious statements set of D contains buggy statements S. Hence,
to guarantee the effectiveness in localizing variability bugs, this work aims to detect the

set of the candidates for Buggy PCs which satisfies the effectiveness requirement.

4.4.2 Important Properties to Detect Buggy Partial Configuration

In practice, a system S may have a huge number of possible configurations, C. Conse-

quently, only a subset of C is sampled for testing and debugging, C = CP ∪CF . A set of

feature selections which has both Bug-Revelation and Minimality properties on the sam-

pled set C is intuitively suspicious to be a Buggy PC . Let us call these sets of selections

Suspicious Partial Configurations (Suspicious PCs).

For example, in Listing 4.1, D = {TwoThirdsFull = F,Overloaded = T} is a Suspicious

PC . All the configurations containing D (c6 and c7) are failing. Additionally, all the strict

subsets of D do not hold Bug-Revelation on C, e.g., {TwoThirdsFull = F} is in c1, and

{Overloaded = T} is in c5, which are passing configurations. Thus, D is a minimal set

which holds the Bug-Revelation property on C.
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Theoretically, the Suspicious PCs in c can be detected by examining all of its subsets to

identify the sets satisfying both Bug-Revelation and Minimality. The number of sets that

need to be examined could be 2|c| − 1. However, not every selection in c participates in

Suspicious PCs . Hence, to detect Suspicious PCs efficiently, this work aims to identify

a set of the selections, SFSc, (Suspicious Feature Selections) of c in which the selections

potentially participate in one or more Suspicious PCs . Then, instead of inefficiently

examining all the possible subsets of c, the subsets of SFSc, which is a subset of c, are

inspected to identify Suspicious PCs .

Particularly, in failing configuration c, there exist the selections such that switching their

current states (from on to off, or vice versa) results in a passing configuration c′. In

other words, the bugs in the product of c are invisible in the product corresponding to c′,

and the resulting product passes all its tests. Intuitively, each of these selections might

be relevant to the visibility of the bugs. Each of these selections can be considered as a

Suspicious Feature Selection. Thus, a selection, which is in a failing configuration yet not

in a passing one, is suspicious to the visibility of the bugs.

Definition 4.5 (Suspicious Feature Selection (SFS)). For a failing configuration

c ∈ CF , a feature selection fs ∈ c is suspicious if fs is not present in at least one passing

configuration, formally ∃c′ ∈ CP , fs ̸∈ c′, specially, fs ∈ c \ c′.

For example, the SFS7 of c7 contains the selections in the set differences of c7 and the

passing configurations, e.g., c7 \ c1 = {Overloaded = T}. Intuitively, the set difference

(c7 \ c1) must contain a part of every Buggy PC in c7, otherwise c1 would contain a Buggy

PC and fail some tests. Hence, any failing configuration c has the following property

about the relation between the set of the Buggy PCs in c and (c \ c′) where c′ is a passing

configuration.

Property 4.1 Given failing configuration c whose set of the Buggy PCs is BPCc, the

difference of c from any passing configuration c′ contains a part of every Buggy PC in

BPCc. Formally, ∀c′ ∈ CP ,∀B ∈ BPCc, (c \ c′) ∩B ̸= ∅.

The intuition is that for a failing configuration c and a passing one c′, a Buggy PC in c can

be either in their common part (c ∩ c′) or their difference part (c \ c′). As c′ is a passing

configuration, the difference must contain a part of every Buggy PC in c. Otherwise,
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there would exist a Buggy PC in both c and c′, and c′ should be a failing configuration

(Bug-Revelation property). This is impossible.

For a configuration c ∈ CF , SFSc is denoted as the set of all the suspicious feature

selections of c, SFSc =
⋃

c′∈CP
(c \ c′). To detect Buggy PCs in c, VarCop identifies all

subsets of SFSc which satisfy the Bug-Revelation and Minimality properties regarding

to C. The following property demonstrates that the proposed method maintains the

effectiveness requirement in detecting Buggy PCs (Section 4.4.1).

Property 4.2 Given a failing configuration c whose set of the Buggy PCs is BPCc, for

any B ∈ BPCc, there exists a subset of SFSc, M ⊆ SFSc, such that M satisfies the

Bug-Revelation condition in the sampled set C and M ⊆ B.

Proof 4.1 Considering a Buggy PC of a failing configuration c, B ∈ BPCc, (c \ c′) ∩ B

is denoted by Mc′ ̸= ∅, where c′ is a passing configuration (Property 4.1). Let consider

M =
⋃

c′∈CP
Mc′. Note that, as Mc′ ⊆ (c \ c′), thus, M ⊆ SFSc =

⋃
c′∈CP

(c \ c′). In

addition, since Mc′ ⊂ B for every passing configuration c′ ∈ CP , so M ⊂ B. Moreover,

for every passing configuration c′ ∈ CP , because c′ ̸⊃ Mc′ (since Mc′ ⊂ (c \ c′)), c′ does
not contain any superset of Mc, then c′ ̸⊃ M . As a result, M , which is a subset of both

SFSc and B, satisfies Bug-Revelation property.

As a result, given c ∈ CF , there always exists a common subset of SFSc and B, for any

B ∈ BPCc, and that set satisfies Bug-Revelation property on C. Hence, according to the

effectiveness requirement (Section 4.4.1), detecting Buggy PCs by examining the subsets

of SFSc is effective to localize the variability bugs. Furthermore, as SFSc only contains

the differences of c and other passing configurations, |SFSc| ≤ |c|. For example in Table

4.1, SFSs of configuration c6 is SFS6 = {Empty = T,Weight = T, TwoThirdsFull =

F,Overloaded = T}, so |SFS6| < |c6|. Thus, SFSc should be used to detect Buggy PCs

rather than c.

Note that Suspicious PCs and Buggy PCs all hold the Bug-Revelation on the given sam-

pled set of configurations, C. However, because there are some (passing) configurations

in C but not in C, it does not express that some selections must be in a Buggy PC .

Hence, Buggy PCs might not hold Minimality property on C. In Listing 4.1, a Buggy

PC is B = {Weight = T, TwoThirdsFull = F,Overloaded = T}. However, B does

not satisfy Minimality on the set of the available configurations (Table 4.1), because its
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subset, {TwoThirdsFull = F,Overloaded = T}, satisfies Bug-Revelation on C. The

reason is that Table 4.1 does not show any product whose configuration contains both

{Weight = F} as well as {TwoThirdsFull = F,Overloaded = T} passes or fails their

tests. Therefore, {Weight = T} is not expressed as a part of the Buggy PC .

4.4.3 Buggy Partial Configuration Detection Algorithm

Algorithm 4.1 shows an algorithm to detect Buggy PCs and return the Suspicious PCs

in a buggy system, given the sets of the passing and failing configurations, CP and CF .

In Algorithm 4.1, all the Suspicious PCs in the system are collected from the Suspicious

PCs identified in each failing configuration c (lines 3–19). From lines 5–9, the set of the

suspicious selections in c is computed. In order to do that, the differences of c from all

the passing configurations are gathered and stored in SFSc (lines 6–9).

Next, the Suspicious PCs in c are the subsets of SFSc which have both Bug-Revelation

and Minimality with respect to C = CF ∪ CP (lines 13–15). Each candidate, a set

of feature selections cand, is checked against these properties by satisfy (line 13). In

Algorithm 4.1, the examined subsets of SFSc have the maximum size of K (lines 10–11).

In other words, the considered interactions are up to K-way. In practice, most of the

bugs are caused by the interactions of fewer than 6 features [12, 77]. Thus, one should

set K = 7 to ensure the efficiency. Specially, the function subsetWithSize(SFSc, k) (line

11) returns all the subsets size k of SFSc. Note that if a set is already a Suspicious PC ,

then any superset of it would not be a Suspicious PC (violating Minimality). Thus, all

the supersets of the identified Suspicious PCs can be early eliminated (line 12).

In the example, from Table 4.1, the detected Suspicious PCs are two sets D1 = {Empty =

T,Overloaded = T} and D2 = {TwoThirdsFull = F,Overloaded = T}.

4.5 Suspicious Statement Identification

For a buggy SPL system, the incorrect statements can be found by examining the state-

ments which implement interactions of Buggy PCs as well as the statements impacting

that implementation, as discussed in Section 4.3.2. Thus, all the statements which im-

plement the interactions of Suspicious PCs and the statements impacting them, are con-

sidered as suspicious to be buggy. In a product p ∈ PF , for a Suspicious PC D whose

the sets of enabled and disabled features are FE and FD, respectively. Hence, in p, the
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Algorithm 4.1: Buggy PC Detection Algorithm

1 Procedure DetectBuggyPCs(CP , CF)

Input : CP is the set of passing configurations

CF is the set of failing configurations

Output: Set of suspicious partial configurations (SuspiciousPCSet)

2 begin

3 SuspiciousPCSet← ∅
4 for c ∈ CF do

5 SFSc ← ∅
6 for c′ ∈ CP do

7 FS ← c \ c′

8 SFSc ← SFSc ∪ FS

9 end

10 for k ∈ [1, K] do

11 Sk ← subsetWithSize(SFSc, k)

12 for (cand ∈ Sk) ∧ (∄spc ∈ SuspiciousPCSets, cand ⊃ spc) do

13 if satisfy(cand, CP , CF ) then

14 SuspiciousPCSet.add(cand)

15 end

16 end

17 end

18 end

19 return SuspiciousPCSet

20 end

interaction implementation of D includes the statements implementing the interaction of

FE which can be impacted by the features in FD (if the disabled features were on in p).

In practice, the features in FD can be mutually exclusive with other features enabled

in p, which is constrained by the feature model [1]. Thus, the impact of FD on the

implementation of the interaction of FE in p, β(FE , p) might not be easily identified

via the control/data dependency in p. In this work, the impacts of the features in FD

on statements in p are approximately identified by using def-use relationships of the

variables and methods that are shared between the features in FD and p [15]. Formally,
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for a statement s, def(s) and use(s) are used to refer to the sets of variables/methods

defined and used by s, respectively.

Definition 4.6 (Def-Use Impact). Given an SPL system S = ⟨S,F, φ⟩ and its sets of

products P, the def-use impact function is defined as γ: F×P→ 2S, where γ(f, p) refers to

the set of the statements in p which are impacted by any statement in the implementation

of feature f , φ(f), via the variables/methods shared between φ(f) and p. Formally, for a

statement s in product p, s ∈ γ(f, p) if one of the following conditions is satisfied:

• ∃t ∈ φ(f), def(t) ∩ use(s) ̸= ∅

• s is data/control-dependent on s’, and s′ ∈ γ(f, p)

In summary, in a product p ∈ PF , for a Suspicious PC whose the sets of enabled and dis-

abled features are FE and FD, the suspicious statements satisfy the following conditions:

(i) implementing the interaction of the features in FE and FD or impacting this imple-

mentation; (ii) executing the failed tests of p. For a buggy system, the suspicious space

contains all the suspicious statements detected for all Suspicious PCs in every failing

product of the system.

4.6 Suspicious Statement Ranking

To rank the isolated suspicious statements of a buggy system, VarCop assigns a score to

each of these statements based on the program spectra of the sampled products. In Var-

Cop, the suspiciousness of each statement is assessed based on two criteria/dimensions:

Product-based Assessment and Test Case-based Assessment.

4.6.1 Product-based Suspiciousness Assessment

This criterion is based on the overall test results of the products containing the statement.

Specially, in a buggy system, a suspicious statement s could be executed in not only the

failing products but also the passing products. Hence, from the product-based perspective,

the (dis)appearances of s in the failing and passing products could be taken into account to

assess the statement’s suspiciousness in the whole system. In general, the product-based

suspiciousness assessment for s could be derived based on the numbers of the passing and

failing products where s is contained or not. Intuitively, the more failing products and
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the fewer passing products where s is contained, the more suspicious s tend to be. This is

similar to the idea of SBFL when considering each product as a test. Thus, this work adopt

SBFL metrics to determine the product-based suspiciousness assessment for s. Specially,

for a particular SBFL metric M , the value of this assessment is determined by ps(s,M)

which adopts the formula of M with the numbers of the passing and failing products

containing and not containing s as the numbers of passed and failed tests executed or not

executed by s.

4.6.2 Test Case-based Suspiciousness Assessment

The test case-based suspiciousness of a statement s is evaluated based on the detailed

results of the tests executed by s. Particularly, in each failing product containing s, the

statement is locally assessed based on the program spectra of the product. Then, the local

scores of s in the failing products are aggregated to form a single value which reflects the

test case-based suspiciousness of s in the whole system.

Particularly, the local test case-based suspiciousness of statement s can be calculated by

using the existing FL techniques such as SBFL [4, 28–31]. This work uses a ranking metric

of SBFL, which is the state-of-the-art FL technique, to measure the local test case-based

suspiciousness of s in a failing product. Next, for a metric M , the aggregated test case-

based suspiciousness of s, ts(s,M), can be calculated based on the local scores of s in all

the failing products containing it. In general, one can use any aggregation formula [145],

such as arithmetic mean, geometric mean, maximum, minimum, and median to aggregate

the local scores of s.

However, the local test case-based scores of a statement, which are measured in different

products, should not be directly aggregated. The reason is that the scores of the state-

ment in different products might be incomparable. Indeed, with some ranking metrics

such as Op2 [146] or Dstar [60], once the numbers of tests of the products are different,

the local scores of the statements in these products might be in significantly different

ranges. Intuitively, if these local scores are directly aggregated, the products which have

larger ranges will have more influence on the suspiciousness score of the statement in the

whole system. Meanwhile, such larger-score-range products are not necessarily more im-

portant in measuring the overall test case-based suspiciousness of the statement. Directly

aggregating these incomparable local scores of the statement can result in an inaccurate

suspiciousness assessment. Thus, to avoid this problem, these local scores in each product
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should be normalized into a common scale, e.g., [0, 1], before being aggregated. The im-

pact of the normalization as well as choosing the aggregation function and ranking metric

on VarCop’s performance will be shown in Section 4.8.2.

4.6.3 Assessment Combination

Finally, the two assessment scores, product-based score, ps(s,M), and test case-based

score, ts(s,M), of statement s are combined with a combination weight, w ∈ [0, 1] to

form a single suspiciousness score of the statement. Equation 4.1 shows how to combine

ps(s,M) and ts(s,M) of s. Note that, to avoid the bias caused by the range-difference

between the two criteria, these two scores should be normalized into a common range, e.g.,

[0, 1] before the interpolation. In the ranking process, the isolated suspicious statements

are ranked according to their interpolated suspiciousness score score(s,M). The impact of

the combination weight w on VarCop’s fault localization performance will be empirically

shown in Section 4.8.2.

score(s,M) = w ∗ ps(s,M) + (1− w) ∗ ts(s,M) (4.1)

4.7 Empirical Methodology

To evaluate the proposed variability fault localization approach, this chapter seeks to

answer the following research questions:

RQ1: Accuracy and Comparison. How accurate is VarCop in localizing variability

bugs? And how is it compared to the state-of-the-art approaches [6, 25, 28]?

RQ2: Intrinsic Analysis. How do the components including the suspicious statement

isolation, the normalization, the suspiciousness aggregation function, and the combination

weight contribute to VarCop’s performance?

RQ3: Sensitivity Analysis. How do various factors affect VarCop’s performance

including the size of sampled product set and the size of test suite in each sampled

product?

RQ4: Performance in Localizing Multiple Bugs. How does VarCop perform on

localizing multiple variability bugs?

RQ5: Time Complexity. What is VarCop’s running time?
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Table 4.2: Dataset Statistics [5]

System
Details Test info Bug info

#LOC #F #P Cov #SB #MB

ZipMe 3460 13 25 42.9 55 249

GPL 1944 27 99 99.4 105 267

Elevator-FH-JML 854 6 18 92.9 20 102

ExamDB 513 8 8 99.5 49 214

Email-FH-JML 439 9 27 97.7 36 90

BankAccountTP 143 8 34 99.9 73 310

#F and #P : Numbers of features and sampled products.

Cov : Statement coverage (%).

#SB and #MB : Numbers of single-bug and multiple-bug cases.

4.7.1 Dataset

To evaluate VarCop, several experiments were conducted on a large public dataset of

variability bugs [5]. This dataset includes 1,570 buggy versions with their corresponding

tests of six Java SPL systems which are widely used in SPL studies. There are 338 cases

of a single-bug, and 1,232 cases of multiple-bug. The details are shown in Table 4.2.

Before running VarCop on the dataset proposed by Ngo et al. [5], a simple inspection

was performed for each case on whether the failures of the system are possibly caused by

non-variability bugs. Naturally, there are bugs which may be classified as “variability”

because of the low-quality test suites which cannot reveal the bugs in some buggy products.

There are 53/1,570 cases (19 single-bug cases and 34 multiple-bug cases) where among the

sampled products in each case, the product containing only the base feature and disabling

all of the optional features fails several tests. These cases possibly contain non-variability

bugs, this problem will be discussed them in Section 4.8.2.
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4.7.2 Evaluation Setup, Procedure, and Metrics

Empirical procedure

Comparative study. For each buggy version, this work compared the performance

in ranking buggy statements of VarCop, Arrieta et al. [6], SBFL [4, 28–31], and the

combination of slicing method and SBFL (S-SBFL) [120, 121] accordingly. For SBFL,

each SPL system is considered as a non-configurable code. SBFL ranks all the statements

executed by failed tests. For S-SBFL, to improve SBFL, S-SBFL isolates all the executed

failure-related statements in every failing product by slicing techniques [26] before ranking.

A failure-related statement is a statement included in at least a program slice which is

backward sliced from a failure point in a failing product. In this experiment, 30 most

popular SBFL metrics [4, 28, 29] were used. For each metric,M , this experiment compared

the performance of all four techniques, including VarCop, SBFL, S-SBFL, and Arrieta

et al. [6], using M .

Intrinsic analysis. This experiment studied the impacts of the following components:

Suspicious Statement Isolation, Ranking Metric, Normalization, Aggregation Function,

and Combination Weight. Different variants of VarCop with different combinations

were created and then their performance is measured accordingly.

Sensitivity analysis. This experiment studied the impacts of several factors VarCop’s

performance: Sample size and Test set size. To systematically vary these factors, the

sample size is varied based on k-wise coverage [53] and the tests are gradually added.

Metrics

Rank, EXAM [140], and Hit@X [28, 147] which are widely used in evaluating FL tech-

niques [4, 6, 28] were adopt. For the cases of multiple variability bugs, Proportion of Bugs

Localized (PBL) [28] are additionally applied for measure FL performance.

Rank. Rank indicates the position of the buggy statements in the resulted lists of the

FL techniques. The lower rank of buggy statements, the more effective approach. If there

are multiple statements having the same score, buggy statements are ranked last among

them. Moreover, for the cases of multiple bugs, this work measured Ranks of the first

buggy statement (best rank) in the lists.

EXAM. EXAM [140] is the proportion of the statements being examined until the first
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faulty statement is reached, Equation 4.2. In this Equation, r is the position of the buggy

statement in the ranked list and N is the total number of statements in the list. The

lower EXAM, the better FL technique.

EXAM =
r

N
× 100% (4.2)

Hit@X. Hit@X [28, 147] counts the number of bugs which can be found after investing X

ranked statements, e.g., Hit@1 counts the number of buggy statements correctly ranked

1st among the experimental cases. In practice, developers only investigate a small number

of ranked statements before giving up[148]. Thus, this work focuses on X ∈ [1, 5].

Proportion of Bugs Localized (PBL). PBL [28] is the proportion of the bugs de-

tected after examining a certain number of the statements. The higher PBL, the better

approach.

4.8 Empirical Results

4.8.1 Accuracy and Comparison (RQ1)

Table 4.3 shows the average performance of VarCop, SBFL, the combination of slicing

method and SBFL (S-SBFL), and the feature-based approach proposed by Arrieta et

al. [6] (FB) on 338 buggy versions containing a single bug each [5] in Rank and EXAM.

Compare to SBFL and S-SBFL. For both Rank and EXAM, VarCop outperformed

S-SBFL and SBFL in all the studied metrics. On average, VarCop achieved 33% better

in Rank compared to S-SBFL and nearly 50% compared to SBFL. This means, to find

a variability bug, by using VarCop, developers have to investigate only 5 statements

instead of about 8 and up to 10 suspicious statements by S-SBFL and SBFL. In EXAM, the

improvements of VarCop compared to both S-SBFL and SBFL are also significant, 30%

and 43%, respectively. For developer, the proportion of statements they have to examine

is reduced by about one third and one haft by using VarCop compared to S-SBFL

and SBFL. For the 5 most popular metrics [4], [59] (in shade) including Tarantula [17],

Ochiai [58], Op2 [146], Dstar [60], and Barinel [30], VarCop achieved the improvement

of more than 15%. Especially, for certain metrics such as Simple Matching [149], the

improvements by VarCop are remarkable, 4 times and 35 times compared to S-SBFL

and SBFL.
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Table 4.3: Performance of VarCop, SBFL, the combination of Slicing and SBFL (S-

SBFL), and Arrieta et al. [6] (FB)

# Ranking Metric
Rank EXAM

VarCop S-SBFL SBFL FB VarCop S-SBFL SBFL FB

1 Barinel 7.83 9.88 11.48 136.27 2.11 2.87 3.15 21.79

2 Dstar 6.16 7.20 8.09 108.78 1.77 1.94 2.02 15.88

3 Ochiai 6.19 7.25 8.14 109.91 1.77 1.95 2.03 16.10

4 Op2 5.86 6.07 6.74 106.99 1.71 1.75 1.80 15.36

5 Tarantula 6.96 9.88 11.48 136.27 1.98 2.87 3.15 21.79

6 Kulczynski2 5.61 6.36 7.08 108.23 1.67 1.77 1.83 15.59

7 M2 5.94 6.13 6.82 108.43 1.71 1.76 1.81 15.77

8 Harmonic Mean 5.95 6.52 7.28 149.70 1.72 1.80 1.86 21.37

9 Zoltar 6.00 6.12 6.78 107.57 1.68 1.75 1.80 15.45

10 Geometric Mean 6.05 7.37 8.29 149.70 1.76 1.99 2.09 21.37

11 Ample2 6.15 6.16 6.86 149.58 1.75 1.77 1.82 21.30

12 Rogot2 6.22 6.52 7.28 133.66 1.80 1.80 1.86 22.24

13 Sorensen Dice 6.50 8.79 10.17 115.72 1.84 2.41 2.62 17.29

14 Goodman 6.50 8.79 10.17 115.72 1.84 2.41 2.62 17.29

15 Jaccard 6.63 8.79 10.17 115.72 1.83 2.41 2.62 17.29

16 Dice 6.63 8.79 10.17 115.72 1.83 2.41 2.62 17.29

17 Anderberg 6.68 8.79 10.17 115.72 1.84 2.41 2.62 17.29

18 Cohen 6.81 8.93 10.33 152.04 1.87 2.47 2.70 21.61

19 Fleiss 6.82 12.24 52.03 145.70 2.09 3.51 9.13 21.65

20 Simple Matching 6.88 28.00 242.70 158.19 2.11 6.67 30.68 21.96

21 Humman 6.88 28.00 242.70 158.19 2.11 6.67 30.68 21.96

22 Wong2 6.88 28.00 242.70 158.19 2.11 6.67 30.68 21.96

23 Hamming 6.88 28.00 242.70 158.19 2.11 6.67 30.68 21.96

24 Sokal 6.91 28.00 242.70 158.19 2.15 6.67 30.68 21.96

25 Euclid 6.96 28.00 242.70 158.19 2.17 6.67 30.68 21.96

26 Rogers Tanimoto 7.05 28.00 242.70 158.19 2.20 6.67 30.68 21.96

27 Scott 7.38 13.22 50.86 147.65 2.17 3.76 8.79 22.23

28 Rogot1 7.38 13.22 50.86 147.65 2.17 3.76 8.79 22.23

29 Russell Rao 14.06 17.87 24.00 309.62 3.58 5.05 6.39 39.27

30 Wong1 14.06 17.87 24.00 309.62 3.58 5.05 6.39 39.27
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Listing 4.2: A variability bug in system ExamDB

1 public boolean consistent(){
2 for (int i = 0; i < students.length; i++) {
3 if (students[++i] != null && !students[i].backedOut && students[i].points < 0) {
4 //Patch: students[i] != null
5 return false;
6 }
7 }
8 return true;
9 }

There are two reasons for these improvements. Firstly, the set of the suspicious statements

isolated by VarCop is much smaller than other approaches’. VarCop identifies the

suspicious statements by analyzing the root causes of failures. The suspicious space by

VarCop is only about 70% of the space of S-SBFL and 10% of the space of SBFL. The

average suspicious space isolated by VarCop is only 66 statements, while the isolated

set by S-SBFL contains 87 statements, and this suspicious set identified by SBFL is even

much larger, 660 statements. Secondly, the suspiciousness of statements computed by

VarCop is not biased by the tests in any specific product. Unlike SBFL, inVarCop, for a

suspicious statement s, the appearances of s in both passing and failing products, as well as

the local test case-based suspiciousness scores of s in all the failing products containing it

are aggregated appropriately. This suspiciousness measurement approach helps VarCop

overcome the weakness of SBFL in computing suspiciousness for the statements of systems.

Listing 4.2 shows a variability bug (ID 298) in feature BackOut of ExamDB. In this code,

each member in students must be visited. However, the students with the even index

are incorrectly ignored because i is increased twice after each iteration (line 2 and line

3). This bug is revealed only when both ExamDB and BackOut are enabled. For QA, 8

products are sampled for testing. There are 4 failing products and total 168 statements

executed during running failed tests. By using Tarantula [17], VarCop ranked the buggy

statement 4 s3 (line 3) first, while SBFL ranked it 10th. Indeed by locally ranking the

buggy statement in each product, s3 is ranked 1st in 3 out of 4 failing products. Mean-

while, this statement is ranked at the 27th position in the ranked list of the other failing

4Note that Bugs could have locality property. For a failure, developers could modify different

statements to repair the system. In the example in Listing 4.2, the bug could be in s2 or s3.

For ease of evaluation and comparison, in the experiments, the buggy statements are statements

marked “incorrect” and repaired by the benchmark. Thus, s3 is considered as buggy statements

(instead of s2) in this example.
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product (p4). In p4, there are 10 correct statements which are executed by failed tests

only, yet not executed by any passed test. By using Tarantula, SBFL assigned these

statements the highest suspiciousness scores in p4. Thus, those statements have higher

scores than the buggy statement which is executed during running both the failed and

passed tests. In the whole system, SBFL uses the test results of all the sampled products

to measure the suspiciousness for all the 168 statements. Consequently, it misleadingly

assigned higher scores for all of the 10 statements which are executed by only the failed

tests in p4, yet not executed by any tests in the others. Consequently, the ranking result by

SBFL is considerably driven by the test results of p4 and mislocates the buggy statement.

Meanwhile, VarCop ignored 101/168 failure-unrelated statements and measured the sus-

piciousness of only 67 statements by analyzing the root cause of the failures. Additionally,

in VarCop, the test case-based suspiciousness of these statements are aggregated from

the suspiciousness values which are measured in the failing products independently. Thus,

the low-quality test suite of p4 cannot significantly affect the suspiciousness measurement,

and the buggy statement is still ranked 1st thanks to the test suites of other products.

#C
as
es

0

100

200

300
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VarCop S-SBFL SBFL

Figure 4.2: Hit@1–Hit@5 of VarCop, S-SBFL and SBFL

Furthermore, VarCop also surpasses S-SBFL and SBFL in Hit@X. In Figure 4.2, after

investigating X statements, for X ∈ [1, 5], there are more bugs found by using VarCop

compared to S-SBFL and SBFL. On average, in 78% of the cases, VarCop correctly

ranked the buggy statements at the top-5 positions, while S-SBFL and SBFL ranked

them at the top-5 positions in only 70% and 61% of the cases, respectively. Moreover, in

about two-thirds of the cases (+65%), the bug can be found by examining only first

3 statements in the lists of VarCop. Meanwhile, to cover the same proportion of the

cases by using S-SBFL and SBFL, developers have to investigate up to 4 and 5 statements.
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Table 4.4: Performance by Mutation Operators

Group Mutation Operator #Bugs Rank EXAM

Conditional COR, COI, COD 32 1.63 0.61

Assignment ASRS 7 2.14 0.89

Logical LOI 17 2.47 2.21

Deletion CDL, ODL 18 3.56 1.09

Relational ROR 52 5.13 1.29

Arithmetic
AODU, AOIU, AORB,

AOIS, AORS, AODS
212 7.63 2.01

Especially, for Hit@1, the number of bugs are found by VarCop after investigating the

first ranked statements is about 101 bugs (30%). This means, in one-third of the

cases, developers just need to examine the first statements in the ranked lists to find

bugs by using VarCop.

Compare to Arrieta et al.[6]. As illustrated in Table 4.3, in all the studied metrics,

VarCop outperformed Arrieta et al. [6] 21 times in Rank and 11 times in EXAM.

Instead of ranking statements, this approach localizes the variability bugs at the feature-

level. Consequently, all the statements in the same feature are assigned to the same

score. In Listing 4.2, the buggy statement at line 3 is assigned the same suspiciousness

level with 22 correct statements. Thus, even the feature containing the fault, BackOut, is

ranked first, the buggy statement is still ranked 22nd in the statement-level fault localizing.

Unfortunately, BackOut is actually ranked 4th, then the buggy statement is ranked 87th.

This could lead to the ineffectiveness of the feature-based approach proposed by Arrieta

et al.[6] in localizing variability bugs in the statement-level.

Overall, the results show that VarCop significantly outperformed the state-of-the-art ap-

proaches, S-SBFL, SBFL, and Arrieta et al. [6], in all 30/30 SBFL ranking metrics.

Performance by bug types

This experiment further analyzed VarCop’s performance on localizing bugs in different

types based on mutation operators [150] and kinds of code elements [151].
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Table 4.5: Performance by Code Elements of Bugs

Code Element #Bugs Rank EXAM

Method Call 22 4.23 0.37

Conditional 148 5.20 1.86

Loop 17 6.41 2.27

Assignment 108 7.18 1.82

Return 43 7.21 1.33

In Table 4.4, VarCop performs most effectively on the bugs created by Conditional

Operators which are ranked between 1st and 2nd on average. The reason is that these bugs

are easier to be detected (killed) by the original tests than other kinds of mutants [152].

This means, if the bugs in this kind can cause the failures in some products, the bugs

will be easier to be revealed by the products’ tests. Moreover, the correct states of either

passing or failing of products affect the performance of FL techniques. As a result, this

kind of bug is more effectively localized byVarCop. Meanwhile, VarCop did not localize

well the bugs created by Arithmetic Operators, as they are more challenging to be detected

by the original tests set of the products [152]. Indeed, because of the ineffectiveness of

the test suites in several products, even they contain the bug(s), their test suites cannot

detect the bugs, and the products still pass all their tests. In these cases, the performance

would be negatively affected.

Table 4.5 shows VarCop’s performance in different kinds of bugs categorized based on

code elements [151]. As seen, VarCop works quite stably in these kinds of bugs. Par-

ticularly, the average Rank achieved by VarCop for bugs in different code elements is

between 4th and 7th, with the standard deviation is only 1.3. In addition, the average

EXAM and the standard deviation are 1.53 and 0.73, respectively.

Performance by the number of involving features

This experiment analyzed the performance of VarCop by the number of the features

which involve in the visibility of the bugs [5]. In the experiment, the number of involving

features is in the range of [1, 25]. In +76% of the cases, the number of involving features

is fewer than or equal to 7. VarCop’s performance in Rank by the numbers of involving
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Figure 4.3: Performance by number of involving features of bugs

features are not significantly different, from 4.45 to 9.69, Figure 4.3. In fact, both the

number of detected Suspicious PCs and the size of each Suspicious PC , which determine

the size of isolated suspicious space, are affected by the number of involving features.

Specially, for the bugs with a smaller number of involving features, the detected Suspicious

PCs are likely fewer, but each of them is likely smaller. With a larger number of involving

features, the detected Suspicious PCs tend to be more, yet each of these Suspicious PCs

is likely larger. For a bug, the isolated suspicious statements space is in direct proportion

to the number of detected Suspicious PCs , but it is in inverse proportion to the size of

each Suspicious PC . Thus, the number of involving features would not linearly affect the

number of isolated suspicious statements and VarCop’s performance.

4.8.2 Intrinsic Analysis (RQ2)

Impact of suspicious statements isolation on performance

To study the impact of Suspicious Statements Isolation (Figure 4.1), which includes Buggy

PC Detection and Suspicious Statements Identification components, on VarCop’s per-

formance, this experiment built the variant of VarCop where these two components are

disabled. For a buggy system, this variant of VarCop ranks all the statements which

are executed during running failed tests in the failing products. Figure 4.4 shows the

performance of VarCop using 5 most popular SBFL metrics [4], [59] when Buggy PC

Detection and Suspicious Statements Identification are enabled/disabled. As expected,

when enabling these components, the performance of VarCop is significantly better, about

16% in Rank.

Interestingly, even when disabling Suspicious Statements Isolation, this variant of Var-
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Figure 4.4: Impact of Buggy PC Detection on performance

Cop is still better than S-SBFL and SBFL. Specially, VarCop obtained a better Rank

than S-SBFL and SBFL in 21/30 and 27/30 metrics, respectively. In these ranking met-

rics, the average improvements of VarCop compared to S-SBFL and SBFL are 34% and

45%. Meanwhile, for the remaining metrics, the performances of S-SBFL and SBFL are

better than VarCop by only 10% and 3%. For example, this variant of VarCop ranked

the buggy statement (s3) in Listing 4.2 at 1st which is much better than the 9th and 10th

positions by S-SBFL and SBFL.

Note that, for 19/338 cases which possibly contain non-variability bugs (mentioned in

Section 4.7.1), there might be no Buggy PC in these buggy systems to be detected.

Moreover, the low-quality test suites in some passing (yet buggy) products might “fool”

fault localization techniques [100]. These passing products might also make VarCop less

effective in isolating suspicious statements. Hence, for these cases, turning off VarCop’s

suspicious statements isolation component helps to guarantee its effectiveness.

Impact of ranking metric on performance

This experiment studied the impact of the selection of the local ranking metric on Var-

Cop’s performance. To do that, different variants of VarCop with different metrics were

built. In Table 4.3 (the 3rd and 7th columns), the performance of VarCop is quite stable

with the different ranking metrics. Particularly, for all the studied metrics, the average

EXAM achieved by VarCop is in a narrow range, from 1.71–3.58, with the standard

deviation of 0.46. Additionally, the average Rank of the buggy statements assigned by

VarCop is varied from 6th–14th. This stability of VarCop is obtained due to the suspi-

cious statements isolation and suspiciousness measurement components. Indeed, VarCop
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Figure 4.5: Impact of Normalization on performance

only considers the statements that are related to the interactions which are the root causes

of the failures. Moreover, VarCop is not biased by the test suites of any specific prod-

ucts. Consequently, its performance is less affected by the low-quality test suites of any

product. Thus, selecting an inappropriate ranking metric, which is unknown beforehand

in practice, does not significantly affect VarCop’s performance. This demonstrates that

VarCop is practical in localizing variability bugs.

In contrast, the performances of S-SBFL and SBFL techniques are considerably impacted

by choosing the ranking metrics. By S-SBFL method, the average Rank of the buggy

statements widely fluctuates from 6th to 28th. By SBFL, the fluctuation of Rank is

even much more considerable, from 7th to 243rd. Consequently, the QA process would

be extremely inefficient if developers using the SBFL technique with an inappropriate

ranking metric.

Impact of normalization on performance

To study the impact of the normalization, this experiment built the variants of VarCop

which enable and disable the normalization component. In this experiment, in both cases,

the local test case-based scores are accordingly measured by 30 popular SBFL metrics and

are aggregated by arithmetic mean.

In Figure 4.5, when enabling the normalization, VarCop’s performance is better than

when normalization is off. Particularly, the performance of VarCop is improved 64% in

Rank and 32% in EXAM when the normalization is enabled. One reason is that for some

SBFL metrics, such as Fleiss [153] and Humman [154], the ranges of the product-based

and test case-based suspiciousness values are significantly different. Additionally, for these

101



R
an

k

E
X

A
M

4.00

5.00

6.00

7.00

8.00

1.00

1.25

1.50

1.75

2.00

Min Arith. 
Mean

Geo. 
Mean

Median Mode Max

Rank Exam

Figure 4.6: Impact of choosing score(s,M) on performance

metrics, the ranges of the local test case-based suspiciousness scores in different products

are also significantly different. For example, there is a bug (ID 25) in the system Email,

with Fleiss, the range of suspiciousness scores in product p1 is [−33, 1.8], while the range

in another product, p2 is much different, [−8.6, 1.78]. Without normalization, a statement

in p2 is more likely to be assigned a higher final score than one in p1. Meanwhile, with

several metrics such as Ochiai [58] and Tarantula [17], the performance of VarCop is

slightly different when normalization is on/off. For these metrics, the local scores of the

statements in the products are originally assigned in quite similar ranges. Thus, these

local scores might not need to be additionally normalized. Overall, to ensure that the best

performance of VarCop, the normalization should be on.

Impact of aggregation function on performance

To study the impact of choosing aggregation function on performance, this experiment

varied the aggregation function of the test case-based suspiciousness assessment. In this

experiment, Op2 [146] was randomly chosen to measure the local scores of the statements.

As seen in Figure 4.6, the performance of VarCop is not significantly affected when

the aggregation function is changed. Specially, the average Rank of VarCop is around

6th − 7th, while the EXAM is about 1.76.

Impact of combination weight on performance

This experiment varied the combination weight w ∈ [0, 1] (Section 4.6) when combining

the product-based and test case-based suspiciousness assessments to form the final score

of statements. Figure 4.7 shows the average Rank and EXAM of the faults in 36 buggy
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Figure 4.7: Impact of choosing combination weight on performance

versions of Email, with w ∈ [0, 1].

As seen, the performance of VarCop is better when both the product-based and test case-

based suspiciousness scores are combined to measure the suspiciousness of the statements.

For w = 1, the statements are ranked by only their product-based suspiciousness. All

the statements in the same feature will have the same suspiciousness score because they

appear in the same number of passing and failing products. For w = 0, a statement

is ranked by only the score which is aggregated from the local scores of the statement

in the failing products. Consequently, the overall performance may be affected by the

low-quality test suites of some products. For instance, the correct statement s appears

in only one failing product p. However, in p, s is misleadingly assigned the highest score.

As a result, when w = 0, s also has the highest score in the whole system, since this

score is aggregated from p, the only failing product containing s. Hence, both of the

product-based and test case-based suspiciousness assessments are necessary for measuring

the suspiciousness of statements (Mentioned in O3).

4.8.3 Sensitivity Analysis (RQ3)

Impact of sample size on performance

For each buggy version of GPL which is randomly selected system, this experiment used

k-wise coverage, for k ∈ [1, 4], to systematically vary sample size. Then, VarCop was

experimented on each case with each set of sampled products.
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Figure 4.8 shows the average Rank and EXAM of VarCop in the buggy versions of GPL

with different sample sets. As expected, the larger sample, the higher performance in

localizing bugs obtained by VarCop. However, when the ranking results reach a specific

point, even more products are tested, the results are just slightly better. Specially, for the

set of 1-wise coverage (One-disabled [14]), the average Rank and EXAM are about 4.31

and 0.45, respectively. Meanwhile, for 2-wise, the ranking results are 1.5 times better. The

reason is that, for a case, the more products are tested, the more information VarCop

has to detect Buggy PCs and rank suspicious statements. However, compared to 3-wise

and 4-wise, even much more products are sampled, which is much more costly in sampling

and testing, the performance is just slightly improved. Hence, with VarCop, one might

not need to use a very large sample to achieve a relatively good performance in localizing

variability bugs.

Impact of test suite’s size on performance

For every buggy version, this experiment gradually increased the size of the test suite

in each product to study the impact of tests on VarCop’s performance. The randomly

selected system in this experiment is ExamDB.

In Figure 4.9, VarCop’s performance is improved when increasing the test suite size. Par-

ticularly, when the number of tests increased from 13 to 90 tests/product, both Rank and

EXAM of VarCop are improved by about twice. After that, even more tests are added,

VarCop’s performance is just slightly affected. The reason is, increasing the number
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Figure 4.9: Impact of the size of test set on performance

of tests provides more information to distinct the correct and incorrect statements, thus

improves VarCop’s performance. However, when the test suites reach a specific effective-

ness degree in detecting bugs, added tests would not provide supplementary information

for the FL process.

Overall, one should trade off between the fault localization effectiveness and the cost of

generating tests and running them. Furthermore, as discussed in Section 4.8.2, instead of

focusing on expanding test suites for products, developers should improve the effectiveness

of the test suites (e.g., test coverage) in detecting bugs.

4.8.4 Performance in Localizing Multiple Bugs (RQ4)

To evaluate VarCop on buggy systems that contain multiple variability bugs, the dis-

sertation conducted an experiment on 1,232 buggy versions of the subject systems with

2,947 variability bugs in total. The components of VarCop were randomly configured:

the ranking metric is Op2 [146], and the aggregation function is arithmetic mean.

Figure 4.10 shows that the average percentage of buggy statements in each case found

(PBL) by VarCop far surpasses the corresponding figures of S-SBFL and SBFL when the

same number of statements are examined in their ranked lists. Specially, after examining

the first statement, VarCop can find nearly 10% of the incorrect statements in a buggy

system. Meanwhile, only 5% and 1% of the bugs are found by S-SBFL and SBFL,

respectively, after inspecting the first statement. Furthermore, about 35% of the bugs can

be found by VarCop by checking only first 5 statements in the ranked lists. Meanwhile,
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Figure 4.10: VarCop, S-SBFL and SBFL in localizing multiple bugs

with S-SBFL and SBFL, developers have to investigate up to 7 and even 10 statements to

achieve the same performance. In addition, the average best Rank that VarCop assigned

for the buggy statements is about 7th. Meanwhile, the corresponding figures of S-SBFL,

SBFL, and Arrieta et al. [6] are 7.5th, 10th, and 293th, respectively.

Especially, in 22% of the cases, VarCop correctly ranked at least one of the bugs at

the top-1 positions, while for S-SBFL, SBFL, and Arrieta et al. [6], the corresponding

proportions are only 10%, 3%, and 0%. In the experiment, at least one of the buggy

statements of about 65% of cases are correctly ranked at top-5 positions by VarCop.

Listing 4.3: A variability bug in feature Number

1 public void preVisitAction(Vertex v){
2 if (v.visited != true) {
3 v.VertexNumber = --vertexCounter;
4 //Patch: v.VertexNumber = vertexCounter++;
5 }
6 }

Listing 4.3 and Listing 4.4 show a case (ID 143) containing two buggy statements in

GPL. For the bug in Listing 4.3, VarCop correctly ranked it 1st. Since in practice, the

number of incorrect statements is unknown beforehand, developers have to conduct the

testing and debugging processes in regression. After fixing the first bug, developers have

to perform regression testing. One more time, VarCop effectively ranked the bug in

Listing 4.4 at the 2nd position. Thus, developers can continuously use VarCop in the

regression process to quickly find all the bugs in the systems. Meanwhile, by using SBFL,
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two buggy statements are ranked 4th and 5th, respectively. This shows the effectiveness

of VarCop in localizing multiple variability bugs in SPL systems.

Listing 4.4: Another variability bug in WeightedWithNeighbors

1 public void addEdge( Vertex start, Neighbor theNeighbor){
2 original( start, theNeighbor );
3 if (isDirected != false) {
4 //Patch: isDirected == false
5 Vertex end = theNeighbor.neighbor;
6 end.addWeight( end, theNeighbor.weight );
7 }
8 }

4.8.5 Time Complexity (RQ5)

The experiments were conducted on a desktop with Intel Core i5 2.7GHz, 8GB RAM. In

65% of the cases, VarCop took only about 2 minutes to automatically localize buggy

statements in each case. On average, VarCop spent about 20 minutes on a buggy SPL

system. Furthermore, this chapter studies VarCop’s running time in different input

aspects including the sample size and the complexity of buggy systems in LOCs.

Particularly, the running time of VarCop gracefully increased when more products were

used to localize bugs (no show). This is expected because to localize the variability bugs,

VarCop needs to examine the configurations of the more sampled products to detect

Buggy PCs . Additionally, VarCop analyzes the detected Buggy PCs in these products

to isolate the suspicious statements. Then calculating their suspiciousness scores, as well

as ranking these statements.

For the complexity of buggy systems, in general, VarCop took more time to analyze the

system which has more lines of code (no show). In particular, VarCop took the least

time to localize bugs in the smallest system, BankAccountTP, while it took more time

to investigate a case in the larger one, ZipMe. However, VarCop needs more time to

investigate a case in Email compared to a case in ExamDB, which is larger than Email

in terms of LOC. The reason is, VarCop analyzes all the failing products to isolate

suspicious statements. In the experiment, there are many cases where the number of

failing products in Email is larger than the number of failing products in ExamDB.
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4.8.6 Threats to Validity

The main threats to the validity of this work are consisted of three parts: internal,

construct, and external validity threat.

Threats to internal validity mainly lie in the correctness of the implementation of

the proposed approach. To reduce this threat, the code was manually reviewed and the

program analysis tools’ outputs were carefully verified.

Threats to construct validity mainly lie in the rationality of the assessment metrics.

To reduce this threat, the metrics, which have been recommended by prior studies/sur-

veys [29] and widely used in previous work [4, 28], were chosen.

Threats to external validity mainly lie in the benchmark used in the experiments.

The artificial bugs are generated by the mutation testing tool, this will make the diversity

of artificial faults in the benchmark, yet could also introduce a bias in the evaluation. To

reduce this threat, the experiments are conducted on various kinds of mutation operators

on both single-bug and multiple-bug settings. In addition, there is also a threat to external

validity is that the obtained results on artificial faults can not be generalized for large-

scale SPL systems containing real faults. To mitigate the threat, six systems, which were

widely-used in existing studies [13, 16, 155], were chosen. These systems target different

application domains. VarCop obtained consistent results on these systems. Moreover,

although it has been very common to evaluate and compare fault localization techniques

using artificial faults as a proxy to real faults [4], it remains an open question whether

results on artificial faults are characteristic of results on real faults. In future work, I

am planning to create manually-seeded faults and collect more real-world variability bugs

in larger SPL systems to evaluate the proposed technique to address these threats. As

another external threat, all systems in the benchmark are developed in Java. Therefore,

it cannot claim that similar results would have been observed in other programming

languages or technologies. This is a common threat of several studies on configurable

software systems [83, 156]. Another threat is that the selected SBFL metrics might not

be representative. To reduce the threat, a large number of the most popular SBFL

metrics [4, 28, 29] were chosen.
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4.9 Summary

This chapter introduces VarCop, a novel approach for localizing variability bugs. First,

to isolate the suspicious statements, VarCop analyzes the overall test results and the

failing products’ code to detect the statements related to the interactions that potentially

make the bugs (in)visible in the products. Then, VarCop ranks each isolated statement

based on two suspiciousness dimensions which are measured by both the overall test

results of the products and the detailed results of the test cases which are executed by

the statement. Several experiments were conducted on a large dataset of buggy versions

of 6 SPL systems in both single-bug and multiple-bug settings. The experimental results

show that in the all 30/30 most popular ranking metrics, VarCop’s performance in Rank

is 33%, 50% and 95% better than the state-of-the-art FL techniques, S-SBFL, SBFL, and

Arrieta et al. [6], for single-bug cases. Moreover, VarCop correctly ranked the buggy

statement in +65% of the cases at the top-3 positions in the resulting lists. For the cases

of multiple-bug, one-third of the bugs in a buggy system are ranked at top-5 positions by

VarCop. Especially, in 22% and 65% of the cases, VarCop is able to effectively localize

at least one buggy statement at top-1 and top-5 positions of its ranked lists, respectively.

From that, developers can iterate the process of bugs detecting, bugs fixing, and regression

testing to quickly fix all the bugs and assure the quality of SPL systems.

This work was published in the IEEE Transactions on Software Engineering in 2021.

Nguyen, Thu-Trang, Kien-Tuan Ngo, Son Nguyen, and Hieu Dinh Vo. “A variability

fault localization approach for software product lines.” IEEE Transactions on Software

Engineering 48, no. 10 (2021): 4100-4118. (ISI/Q1)
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Chapter 5

Automated Variability Fault Repair
This chapter proposes two approaches, product-based and system-based, to automatically

repair the variability bugs in an SPL system to fix the failures of the failing products

and not to break the correct behaviors of the passing products. Firstly, this chapter

introduces the concepts of APR and SPL, as well as the problem of repairing variability

bugs in SPL systems. Next, this chapter presents the basic product-based and system-

based approach (ProdBasedbasic and SysBasedbasic) for repairing variability bugs. Then,

this chapter introduces the enhanced variants of these approaches (ProdBasedenhanced

and SysBasedenhanced), which embed the heuristic rules.

5.1 Introduction

In practice, bugs are an inevitable problem in software programs. Developers often need

to spend about 50% of their time on bug addressing [34]. Detecting and fixing bugs in SPL

systems could be very complicated due to their variability characteristics. Echeverŕıa et

al. [35] conducted an empirical study to evaluate engineers’ behaviors in fixing errors and

propagating the fixes to other products in an industrial SPL system. They showed that

fixing buggy SPL systems is challenging, especially for large systems. Indeed, in an SPL

system, each product is composed of a different set of features. Due to the interaction of

different features, a bug in an SPL system could manifest itself in some products of the

system but not in others, so called variability bugs. In order to fix variability bugs, the

APR tools need to find patches which not only work for one product but also for all the

products of the system, i.e., these tools need to fix the incorrect behaviors of all failing

products, and do not break the correct behaviors of the passing products.

To reduce the cost of software maintenance and alleviate the heavy burden of manually

debugging activities, multiple automatic program repair (APR) approaches [18, 36–40]

have been proposed in recent decades. These approaches employ different techniques

to automatically (i.e., without human intervention) synthesize patches that eliminate

program faults and obtain promising results. However, these approaches focus on fixing

bugs in a single non-configurable system.
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In the context of SPL systems, there are several studies attempting to deal with the

variability bugs at different levels, such as model or configuration. For example, Arcaini

et al. [41, 42] attempt to fix bugs in the variability models. Weiss et al. [43, 44] repair

misconfigurations of the SPL systems. However, repairing variability bugs at the source

code level still remains unexplored.

This research aims to make the first attempt at automatically repairing variability bugs

in the source code of SPL systems. This chapter proposes two approaches, product-based

and system-based, for repairing buggy SPL systems at the source code level. For the

product-based approach (ProdBasedbasic), each failing product of the system is repaired

individually, and then the obtained patches, which cause the product under repair to

pass all its tests, are propagated and validated on the other products of the system. For

the system-based approach (SysBasedbasic), instead of repairing one individual product

at a time, all the products are considered for repairing simultaneously. Specifically, the

patches are generated and then validated by all the sampled products of the system in

each repair iteration. For both approaches, the valid patches are the patches causing all

the available tests of all the sampled products of the system to pass.

Furthermore, this chapter also introduces several heuristic rules for improving the per-

formance of the two approaches in repairing buggy SPL systems. The heuristic rules are

started from the observation that, in order to effectively and efficiently fix a bug, an APR

tool must correctly decide (i) where to fix (navigating modification points) and (ii) how to

fix (selecting suitable modifications). The heuristic rules focus on enhancing the accuracy

of these tasks by leveraging intermediate validation results of the repair process.

For navigating modification points, APR tools [38, 48] often utilize the suspiciousness

scores, which refer to the probability of the code elements to be faulty. These scores are

often calculated once for all before the repair process by FL techniques such as spectrum-

based [25, 31] or mutation-based FL [157]. However, a lot of additional information

can be obtained during the repairing process, such as the modified programs’ validation

results. Such information can provide valuable feedback for continuously refining the

navigation of the modification points [49]. Therefore, in this work, besides suspiciousness

scores, the fixing scores of the modification points, which refer to the ability to fix the

program by modifying the source code of the corresponding points, are used for navigating

modification points in each repair iteration. The fixing scores are continuously measured

and updated according to the intermediate validation results of the modified programs.
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The intuition is that if modifying the source code at a modification point mp causes (some

of) the initial failed test(s) to be passed, mp could be the correct position of the fault

or have relations with the fault. Otherwise, modifying its source code cannot change

the results of the failed tests. The modification point with a high fixing score and high

suspiciousness score should be prioritized to attempt in each subsequent repair iteration.

After a modification point is selected, APR tools generate and select suitable modifica-

tions for that point and evaluate them by executing tests [36, 38, 50]. This dynamic

validation is time-consuming and costs a large amount of resources. In order to miti-

gate the wasted time of validating incorrect modifications, this dissertation introduces

modification suitability measurement for lightweight evaluating and quickly eliminating

unsuitable modifications. The suitability of a modification at position mp is evaluated

by the similarity of that modification with the original source code and with the previous

attempted modifications at mp. The intuition is that the correct modification at mp is

often similar to its original code and the other successful modifications at this point, while

the modifications similar to the failed modifications are often incorrect. Thus, the more

similar a modification is to the original code and to the successful modifications, and the

less similar it is to the failed modifications, then the more suitable that modification is

for attempting at mp.

These heuristic rules are embedded on both product-based and system-based approaches,

and the enhanced versions are called ProdBasedenhanced and SysBasedenhanced.

Several experiments were conducted on a dataset of 318 buggy versions of 5 SPL systems

(i.e., 318 variability bugs) to evaluate the performance of the approaches, ProdBasedbasic,

SysBasedbasic, ProdBasedenhanced, and SysBasedenhanced. The experimental results

show that the product-based approach is considerably better than the system-based ap-

proach by 12 to 30 times in the number of plausible fixes and about 20 times in the

number of correct fixes. Interestingly, the heuristics could help to boost the performance

of both product-based and system-based approaches by up to 200%. For instance, by

adopting the APR tool Cardumen [63], ProdBasedbasic and SysBasedbasic can correctly

fix 13 and 0 systems respectively, while ProdBasedenhanced and SysBasedenhanced cor-

rectly fix 40 and 1 systems respectively. Moreover, the repair performance could be

negatively impacted by FL tools since the modification points are selected based on FL

results which are often imperfect. To mitigate the impact of the third-party FL tool,

this dissertation assesses the effectiveness of the repair approaches if correct FL results
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Figure 5.1: The feature model of the ExamDB system

are provided. This experiment shows that the product-based approach is better than

the system-based approach about 3 times in effectiveness and 9 times in efficiency.

In addition, the proposed heuristic rules help to increase 30-150% the number of cor-

rect fixes and decrease 30-70% the number of attempted modification operations of the

corresponding basic approaches.

5.2 Problem Statement

Listing 5.1: Class ExamDataBaseImpl in Feature BackOut

1 public class ExamDataBaseImpl{
2

3 public int getGrade(int matrNr) throws ExamDataBaseException{
4 int i = getIndex(matrNr);
5 if(students[++i] != null && !students[i].backedOut){
6 //Patch: if(students[i] != null && !students[i].backedOut)
7 return pointsToGrade(students[i].points, 0);
8 }
9 throw new ExamDataBaseException("Matriculation number not found");

10 }
11 }

Figure 5.1, Listing 5.1, and Listing 5.2 show a variability bug in the ExamDB system.

This system has 8 features, and the bug occurs in the feature named BackOut (line 5,

Listing 5.1). The feature model [7] and feature order [158] of this system are defined in

Figure 5.1. The feature model defines the dependencies and constraints between features.

To construct a concrete product, features are added one after another following the fea-

ture order. This SPL system is sampled and tested by 8 products. The corresponding

configurations and test results of these products are shown in Table 5.1. This variability
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Table 5.1: The tested products of ExamDB system and their test results

Feature

ExamDB BonusPoints BackOut Statistics BonusPointsBackOut BonusPointsStatistics BackOutStatistics BonusPointsBackOutStatistics

P
ro
d
u
ct

p1 T F F F F F F F

p2 T T T F T F F F

p3 T T F T F T F F

p4 T F T T F F T F

p5 T T T T T T T T

p6 T T F F F F F F

p7 T F F T F F F F

p8 T F T F F F F F

T means that the corresponding feature is enabled and F means that the corresponding feature is disabled in the product.

p4 and p8 fail at least one test (failing products). Other products pass all their tests (passing products).

bug causes products p4 and p8 to fail at least one test of their test suites, while the other

products pass all their tests, i.e., PF = {p4, p8} and PP = {p1, p2, p3, p5, p6, p7}.

Listing 5.2: Class ExamDataBaseImpl in Feature BonusPointBackOut

1 public class ExamDataBaseImpl{
2

3 public int getGrade(int matrNr) throws ExamDataBaseException{
4 int i = getIndex(matrNr);
5 if(students[i] != null && !students[i].backedOut){
6 return pointsToGrade( students[i].points, students[i].bonusPoints);
7 }
8 throw new ExamDataBaseException("Matriculation number not found");
9 }

10 }

In this system, method getGrade of class ExamDataBaseImpl is implemented by both fea-

tures BackOut and BonusPointBackOut. If BackOut is enabled and BonusPointsBackOut

is disabled, the buggy version of the method getGrade is included in the source code of

the product and causes the product failure. Instead, if the feature BonusPointsBackOut

is enabled, the correct version of getGrade implemented in this feature (Listing 5.2) will

be composed in the product. Note that, even if both BackOut and BonusPointBackOut

are enabled, the correct method getGrade of BonousPointBackOut will still be included

in the product’s source code, according to the defined feature order (shown in Figure 5.1).

As a result, the products such as p2 and p5 have correct behaviors and pass all their tests.

S = {ExamDB.ExamDataBaseImpl.58, BackOut.ExamDataBaseImpl.26,...} is the

set of suspicious statements detected and ranked by the FL tool VarCop. In particular,

ExamDB.ExamDataBaseImpl.58 is the statement at line 58 in class ExamDataBaseImpl

of the feature ExamDB (not shown in Listing 5.1). Besides, BackOut.ExamDataBaseImpl.26
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is statement at line 26 in class ExamDataBaseImpl of the feature BackOut (i.e., the state-

ment s5 in Listing 5.1). The repair approach could select these statements as modification

points for fixing. The modification of statement ExamDB.ExamDataBaseImpl.58 af-

fects all the products of the system since the feature ExamDB is enabled in all of the

products. Instead, the modification of statement BackOut.ExamDataBaseImpl.26 af-

fects the products p4 and p8, whose feature BackOut is enabled, and they both contain

this statement. Although feature BackOut is also enabled in two products p2 and p5, the

statement BackOut.ExamDataBaseImpl.26 is not contained by these two products, so

modifying it will not affect the behaviors of p2 and p5.

Repairing variability bugs in SPL systems means fixing the buggy statements to not only

cause all the failing products to pass their tests but also not break the behaviors of any

passing products of the systems.

Definition 5.1 (Repairing variability faults in an SPL system). Let us consider

the 4-tuple ⟨S, P, T , S ⟩, where:

• S is an SPL system containing variability bugs,

• P = {p1, . . . , pn} is the set of n sampled products, P = PP ∪ PF , where PP and PF

are the sets of passing and failing products of S,

• T = {T1, . . . , Tn} is a set of test suites, where Ti ∈ T is the test suite of product pi

(for each i ∈ {1, . . . , n}), and

• S = {s1, . . . , sk} is the ranked list of suspicious statements of the system S which

could be obtained by an FL technique.

Repairing variability bugs in an SPL system consists in finding candidate patch(es) which

make all the available tests in T pass.

5.3 Automated Variability Fault Repair

This section introduces two approaches to repair variability bugs of an SPL system as de-

fined in Definition 5.1: product-based (ProdBasedbasic) and system-based (SysBasedbasic),

which not only try to fix the incorrect behaviors of the failing products but also try to

not break the correct behaviors of the passing products.
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The product-based approach individually repairs each failing product pi ∈ PF . Then, the

obtained patches, which cause pi to pass all its tests, are propagated and validated on

the other products of the system. By this approach, during the repair process, only the

information of the product under repair pi is considered for generating, evaluating, and/or

evolving the patches. The other products of the system are used to validate the obtained

patches after finishing the process of repairing pi.

For the system-based approach, instead of repairing one individual product at a time, all

the products in P are considered at the same time during repair. By this method, in each

iteration of the repair process, the patches are generated, evaluated, and/or evolved based

on the information of all the products in P of the system.

For both approaches, the valid patches are the patches causing all the available tests of

all the products in P to pass.

5.3.1 Product-based Approach (ProdBasedbasic)

The product-based approach (ProdBasedbasic) is shown in Algorithm 5.1. Specifically, an

APR tool R is adopted to generate patches for each failing product pi ∈ PF with its con-

tained suspicious statements Si (line 5-6). Note that S is the list of suspicious statements

of the whole system S, which is identified by an FL technique such as VarCop. For

each failing product pi, each statement s ∈ S needs to be mapped to the corresponding

statements in the product. In other words, Si (line 5) consists of the suspicious state-

ments which occur in pi, Si ⊆ S . During the repair of product pi, only the suspicious

statements contained in this product are considered. The process of generating patches

PatchGeneration (i.e., line 6 in Algorithm 5.1) is described in details latter.

PatchGeneration gives as output the set of candidate patches Ci which make all the tests

Ti of pi to pass (line 6). Each candidate patch c ∈ Ci is then propagated and validated

on all the other products in P (line 7). If a candidate patch causes all the tests in T to

pass, then the patch is valid for fixing the system S. If none of the candidate patches in

Ci causes all the tests in T to pass, the process continues by trying to fix the other failing

products of the system (line 4).

The fixing process stops if one of the following conditions is satisfied: (i) there is at least

a candidate patch passing all the available tests of all products in P , (ii) all the failing

products in PF have been attempted to be fixed by R, or (iii) the time execution limitation
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Algorithm 5.1: ProdBasedbasic algorithm

1 Procedure ProductBasedApproach(P , T , S)
Input : P is the set of products of the system S

T is the set of test suites of the products in P

S is the list of suspicious statements of the system S

Output: Set of valid patches (validPatchSet)

2 begin

3 validPatchSet ← ∅
4 for pi ∈ PF do

5 Si ← SuspStmtInProductMapping(S , pi)

6 Ci ← PatchGeneration(pi, Ti, Si)

7 validPatchSet ← PatchGlobalValidation(P , T , pi, Ci)

8 if validPatchSet.size() > 0 or timeout then

9 break

10 end

11 end

12 return validPatchSet

13 end

is reached. The complexity of ProdBasedbasic algorithm (Algorithm 5.1) is O(n) where

n is the number of failing products.

Patch generation

Algorithm 5.2 shows the process of generating patches for an individual failing product

pi ∈ PF (i.e., line 5 in Algorithm 5.1). In general, any APR tool R can be employed as the

PatchGeneration procedure. For a selected modification point mp (line 6), depending

on the employed APR tool, a modification operation can be generated by considering or

not some specific information; such information could be taken from the program under

repair or from outside the program. Without loss of generality, this algorithm only sets

the product under repair pi as an input for generating modification operations (line 7),

and the other information is excluded.

The generated modification operations d are then used to construct candidate patches

(line 8). A patch could contain one or multiple modification operations, and it could also

be obtained through a cross-over operation or evolved from the previous patches. In this
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Algorithm 5.2: Patch generation algorithm in ProdBasedbasic

1 Procedure PatchGeneration(pi, Ti, Si)
Input : pi is the product under repair

Ti is the test suite of product pi

Si is the list of suspicious statements in product pi

Output: Set of valid patches of product pi (Ci)

2 begin

3 Ci ← ∅ //valid patches of product pi

4 testResult ← TestResultInitialization(pi, Ti)

5 while ¬searchStop do

6 mp ← ModificationPointSelection(Si)

7 d ← ModificationOperationGeneration(pi, mp)

8 c← PatchConstruction(d , testResult)

9 testResult ← PatchLocalValidation(pi, Ti, c)

10 if ∀t ∈ testResult, t is a passed test then

11 Ci.add(c)

12 end

13 end

14 return Ci

15 end

algorithm, PatchConstruction is also an abstract function representing the correspond-

ing function of any APR tool. This algorithm sets two inputs for this function, including

the modification operation d and the test results testResult of the previous patch or of the

original product if no patch has been found so far. In practice, several APR approaches

such as GenProg [18] need the testResult to measure the fitness, navigate the search, and

the evolution process during generating patches. Instead, some other APR approaches do

not need the testResult of the previous patch. For example, jMutRepair [36] can synthe-

size a new patch in each iteration of the repair process without evolving from the other

attempted patches. To keep the algorithm as simple as possible, some other additional

information (e.g., the previous attempts) that could be needed in PatchConstruction is

excluded in this algorithm.

After that, the function PatchLocalValidation (line 9) executes the patched product

with the given test suite Ti and outputs the corresponding test results. If all the tests in Ti

are passed, the corresponding patch is a valid patch of the product pi (line 10–11). Such
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Algorithm 5.3: Patch global validation algorithm in ProdBasedbasic

1 Procedure PatchGlobalValidation(P , T , pi, Ci)
Input : P is the set of products of the system S

T is the set of test suites of the products in P

pi is the product under repair

Ci is the set of valid patches of product pi

Output: Set of patches which are valid for all products in P (validPatchSet)

2 begin

3 validPatchSet ← ∅
4 for c ∈ Ci do

5 valid ← true

6 for pk ∈ P \ {pi} do
7 testResultpk ← PatchLocalValidation(pk, Tk, c)

8 if ∃t ∈ testResultpk , t is failed test then

9 valid ← false

10 break

11 end

12 end

13 if valid then

14 validPatchSet .add(c)

15 end

16 end

17 return validPatchSet

18 end

valid patches will be globally validated on the other products of the systems (invocation

at line 7 in Algorithm 5.1, and definition in Algorithm 5.3).

Patch validation

The process PatchGlobalValidation of propagating and validating the obtained patches

of pi on the other products of the system (line 7 in Algorithm 5.1) is shown in Algo-

rithm 5.3. Different products of an SPL system could share multiple statements. Thus,

a fix in one product needs to be propagated and validated by the other products of the

system. Specifically, for validating the obtained patch c ∈ Ci of pi on the product pk (be-

ing pk a product in P different from pi), all of the modifications in c are applied into the
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corresponding positions in pk (line 6–11). Note that there are cases that a modification

in c cannot be applied in pk since there does not exist a corresponding modification point

in pk. If all the modifications in c cannot be applied in pk, this patch will not impact pk’s

behaviors. This means that the validation result of pk with such a patch corresponds to

its original test result. If a patch c ∈ Ci causes all the tests of all products in P to pass,

c is a valid patch to fix the system S (lines 13–15).

5.3.2 System-based Approach (SysBasedbasic)

The system-based approach (SysBasedbasic) for repairing a buggy SPL systemS is shown

in Algorithm 5.4. This algorithm attempts to repair all the products of the system S

at the same time. For each repair iteration, the modification point mp is selected in the

ranked list of all the suspicious statements S of the system (line 6). Then, any APR tool

R can be used to generate a suitable modification operation for the selected point (line 7).

Similarly to Algorithm 5.2, the patch can be constructed by considering only the newly

generated modification operation d or evolved from the previous attempts (line 8). After

that, the generated patch is applied to all the products pi ∈ P of the system and validated

by all the test suites Ti ∈ T (lines 10–13). For a product pi which does not contain any

corresponding modification points of the modifications in a patch c, testResultpi (line 11)

is exactly the original test results of this product. Indeed, if pi does not contain the

statements modified by c, its source code cannot be changed when c is applied.

To construct a patch, similarly to the product-based approach, the test result of the

previous patch is passed to PatchConstruction function. However, instead of using the

test result of one product, the system-based approach employs the test results of all the

products, testResultSet , for measuring fitness values and guiding the search process in

the next generation (line 8). Any patch which causes all the tests in T to pass is a valid

patch (line 14–23). The repair stops (guard at line 5) when: (i) at least a valid patch is

found or (ii) the time budget is exhausted. The complexity of the system-based algorithm

(Algorithm 5.4) is O(m) where m is the number of products of the system.

Computational improvement

In each repair iteration, the patches are generated, evaluated, and/or evolved based on

the test information of all the sampled products P of the system. Thus, all the products

must be validated after each patch c is constructed (line 10–13). However, executing tests
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Algorithm 5.4: SysBasedbasic algorithm

1 Procedure SystemBasedApproach(S, P , T , S)
Input : S is the SPL system under repair

P is the set of products of the system S

T is the set of test suites of the products in P

S is the list of suspicious statement of system S

Output: Set of patches which are valid for all products in P (validPatchSet)

2 begin

3 validPatchSet ← ∅
4 testResultSet ← TestResultsInitialization(P , T )
5 while validPatchSet.size() = 0 and ¬timeout do

6 mp ← ModificationPointSelection(S )

7 d ← ModificationOperationGeneration(S, mp)

8 c← PatchConstruction(d , testResultSet)

9 testResultSet ← ∅
10 for pi ∈ P do

11 testResultpi ← PatchLocalValidation(pi, Ti, c)

12 testResultSet .add(testResultpi)

13 end

14 valid ← true

15 for testResultpi ∈ testResultSet do

16 if ∃t ∈ testResultpi, t is a failed test then

17 valid← false

18 break

19 end

20 end

21 if valid then

22 validPatchSet .add(c)

23 end

24 end

25 return validPatchSet

26 end

of all products P in each repair iteration is very time-consuming. To boost the efficiency

of Algorithm 5.4, one could improve the fitness function and stop validating a patch as

soon as there is a patched product that failed. For instance, lines 15–19 could be moved
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into the loop in line 10, and a suitable break statement added to stop validating other

products right after a product fails its test(s).

Although this method could enhance the patch validation efficiency, the precision of the

fitness function could be negatively affected. Indeed, the fitness functions used to evaluate

the patches are based on the number of passed and failed tests [18, 48, 63]. Early stopping

right after a test fails, would cause a loss of information about the non-executed test

cases. Therefore, to effectively and efficiently validate patches in SysBasedbasic, it would

require a different fitness function that can handle the lack of some test information. This

is beyond the scope of this research, and I will investigate it in the future work.

5.3.3 Product-based Approach vs System-based Approach

The main difference between the system-based and product-based approaches is the scope

of generating and validating patches in each repair iteration. For each repair iteration in

the system-based approach, the PatchConstruction function synthesizes patches, mea-

sures the fitness values, and/or evolves patches by considering the test results of all the

products P of the system (line 8, Algorithm 5.4). Instead, in the product-based approach,

the test results of only the product under repair are considered (line 8, Algorithm 5.2).

For example, the APR approaches which leverage evolutionary algorithms, such as jGen-

Prog [36], often use a fitness function to guide the evolution of a population of patches

throughout a number of generations. Specifically, in a given generation k, the patches

with better fitness values will be selected for evolving at generation k + 1. The default

fitness function in jGenProg counts the number of failed tests. The lower number of

failed tests, the better a patch. By adopting this type of APR tool, in the product-based

approach, the fitness value is the number of failed tests in Ti of the product under repair

pi only. Instead, in the system-based approach, the fitness value is the total number of

failed tests of all the tests in T of all the products of the system.

For the product-based approach, the employed APR tool R can quickly evaluate the

generated patches since the number of tests to execute is much less compared to the

system-based approach. However, in the product-based approach, the candidate patches

could be biased by the product under repair because they are evaluated using the tests

of only one product. Consequently, it could be less effective in generating a good patch

for the whole system. In contrast, in the system-based approach, the generated patches

could be better in the general context of the system compared since they are evaluated
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over all the test suites of all the products. However, the number of tests that must be

executed in each iteration could be very large. This could be inefficient in practice.

5.4 Heuristic Rules for Improving the Repair Performance

This section introduces several heuristic rules to improve the APR tools’ performance

by guiding them to effectively and efficiently navigate modification points and select

suitable modifications. Then, this section shows how to apply these heuristic rules on

both product-based and system-based approaches to boost their performance in repairing

variability bugs.

5.4.1 Heuristic Rules for Improving the Performance of Automated Program

Repair Tools

Modification point navigation (ModNav)

To decide the positions in the program for synthesizing patches, APR tools often select

modification points based on their suspiciousness scores measured in advance by FL

techniques. In previous studies [125, 159, 160], FL techniques, such as Ochiai [31], have

shown their effectiveness in creating the initial ranked list of suspicious statements and

narrowing the search space for APR tools. However, the list of suspicious statements could

be continuously better (re-)ranked, and the precision of modification point navigation

could also be gradually refined by the intermediate results of program repair [49, 161].

Indeed, the validation results of the modification operations can provide valuable feedback

for correctly finding the positions of the faulty code elements. The key idea of heuristic

rule ModNav is that for a modification point mp, if a modification operation at that

point causes the initial failed test(s) to be passed, mp could be the correct position of the

fault or have relations with the fault. Instead, if modifying its code can not change the

failure states of the failed tests, probably mp is not the correct position of the fault.

For example, Table 5.2 shows several modification operations generated to fix the bug

in Listing 5.1 and their corresponding validation results. In this table, the numbers of

initial failed tests and passed tests are shown in the header of corresponding columns.

Each row shows the number of initial failed/passed tests which are still failed/passed

after applying the modification operation. Although the modification operation MO3 at

BackOut.ExamDataBaseImpl.26 (i.e., statement s5 in Listing 5.1) could not make all
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Table 5.2: Example of modification operations for fixing the bug at statement s5 in

Listing 5.1

Statement ID Modification operation #failed tests (2) #passed tests (116)

ExamDB.ExamDataBaseImpl.58 MO1 2 90

BackOut.ExamDataBaseImpl.26 MO2 1 115

BackOut.ExamDataBaseImpl.26 MO3 1 116

the tests passed, it helps to decrease the number of failed tests. Initially, there were 2

failed tests, and after applying this modification operation, the number of failed tests

decreased to 1. This indicates that the modification operation MO3 is still incorrect in

fixing the buggy statement, but the selected statement seems to be the correct position

to be fixed. It should be attempted to continuously fix in the next iterations.

When applying rule ModNav , the navigation is guided by not only the suspiciousness

scores of the code elements but also by their fixing scores measured based on the validation

results of the attempted modification operations. The fixing score of a modification point

mp = (pos , co) indicates the ability to fix the program by modifying source code co at the

position pos . In each repair iteration, both suspiciousness and fixing scores are combined

to navigate modification points. In particular, suspiciousness scores are calculated once

in advance by off-the-shelf FL tools. Instead, fixing scores are initialized with the same

values for all modification points and then continuously updated in each repair iteration

after a modification operation is applied and validated.

For a modification point mp, if a modification operation at mp causes all the initial failed

tests to pass and does not break any initial passed tests, that modification operation is

the valid patch of the program under repair. However, in the case that not all of the tests

are passed, the modification operation can still reflect the ability to fix the program at the

corresponding point. This study measures the fixing score of a modification point based

on the information of to what extent the modification at that point fixes unexpected

behaviors (i.e., whether some initial failed tests are fixed (changed to “passed”)) and

breaks correct behaviours (i.e., whether some initial passed tests are broken (changed to

“failed”)).

To measure the fixing scores and use them for guiding modification point navigation in

the next iterations, the modification operations are divided into three groups based on the
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test results of the corresponding modified programs: SomeFixedNoneBroken, SomeFixed-

SomeBroken, and NoneFixed. Specifically, SomeFixedNoneBroken refers to the modifica-

tion operations causing some initial failed tests to be passed and do not break any initial

passed tests. SomeFixedSomeBroken refers to the modification operations causing some

initial failed tests to be passed but breaking some initial passed tests. Finally, NoneFixed

refers to the modification operations which cannot change the state of any initial failed

tests. For example, the modification operation MO1 in Table 5.2 is categorized in the

group NoneFixed, since none of the failed tests is fixed. The modification operations MO2

and MO3 are in group SomeFixedSomeBroken and SomeFixedNoneBroken, respectively.

Both MO2 and MO3 can fix one initial failed test. However, MO3 does not break any

initial passed test, while MO2 breaks one. This intuitively shows that the ability to fix

the program at the corresponding modification point of MO3 is better than that of MO2.

According to the state of fixing the initial failed tests and breaking the initial passed tests,

the order of these groups in terms of ability to fix the program is as follows: (1) Some-

FixedNoneBroken, (2) SomeFixedSomeBroken, and (3) NoneFixed. This work follows this

order to prioritize the selection of a modification point in the next iterations. This means

that the modification point whose modification is in group SomeFixedNoneBroken will

have the highest priority of being selected (i.e., highest fixing score). Particularly, the

fixing score of a modification point is measured as follows:

Definition 5.2 (Fixing score). Given a program with test suite T = Tf ∪ Tp, where

Tf is the set of initial failed tests and Tp is the set of initial passed tests, after applying a

modification operation d = op(mp, cn), the fixing score of the modification point mp is:

fixing score(mp) =


2 if ∃t ∈ Tf , t becomes a passed test and ∄t′ ∈ Tp, t

′ becomes a failed test

1 if ∃t ∈ Tf , t becomes a passed test and ∃t′ ∈ Tp, t
′ becomes a failed test

0 otherwise

(5.1)

In each repair iteration, the modification point with the highest fixing score will be se-

lected. If the modification points have the same fixing scores, the possibility of being

selected is decided based on their suspiciousness scores. In this work, the suspiciousness

scores of the modification points are measured by a FL tool, VarCop.

The detailed number of failed and passed tests could also somewhat reflect the fixing

ability of the modification points. However, this study does not consider such detailed
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information in measuring fixing scores. The reason is that, for a modification operation,

the detailed number of passed and failed tests depends on not only the modification point

but also on the specific modification (i.e., modified code). Such detailed results could

provide wrong indication for evaluating the correctness of the modification points. For

example, a modification operation that attempts the correct position but using a wrong

modification, could fix only some initial failed tests and break multiple passed tests.

Instead, the sign of changing the state of a test from failed to passed is a visible evidence

showing that the modification point is a buggy element or related to the bug. Thus, that

position should be prioritized to continuously attempt modifying (fixing score is 2 or 1).

Modification suitability measurement (ModSuit)

After selecting a modification point, an APR tool generates and selects suitable modifica-

tion operations to attempt to fix that point. To validate the suitability of a modification

operation, all the tests (or, at least, all the failed tests) of the program under repair need

to be re-executed. This dynamic validation is repeated multiple times during the repair

process. This validation step is often time-consuming and costs a large amount of re-

sources. This section proposes the heuristic rule ModSuit that measures the suitability of

a modification operation without executing tests. This could enhance both the efficiency

and the effectiveness of APR tools.

The rule is based on the observation that the previous modifications of a modification

point mp can provide empirical evidence for APR tools about which modifications should

or should not be attempted. The reason is that the previous modifications of mp are the

modifications that have been attempted and validated by tests. Their validation results

can reveal whether similar modifications are suitable for that point or not. Additionally,

a correct patch is often similar to the original code [162, 163]. Thus, for the modification

point mp, its original code and the previous modifications can be leveraged to quickly

evaluate the suitability of a newly generated modification. The intuition is that a suitable

modification d at mp could be similar to the original code of mp as well as the successful

modifications (Definition 5.3) at this point, while it should not be similar to the failed

modifications (Definition 5.4) which were tested and shown to be not effective.

Definition 5.3 (Successful modification). Given a program with the test suite T , a

modification operation d = op(mp, cn) is a successful modification if after applying d,

each test t ∈ T is a passing test.
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Definition 5.4 (Failed modification). Given a program with the test suite T , a modi-

fication operation d = op(mp, cn) is a failed modification if after applying d, there exists

a test t ∈ T that is failing.

In this work, the suitability of a new modification operation d = op(mp, cn) is measured

based on the similarity of the modified code cm (if d is applied) with the original code

at mp, as well as the previous successful and failed modifications of this point. The

intuition is that the correct modification at mp is often similar to its original code and the

other successful modifications at this point, while the modifications similar to the failed

modifications are often incorrect. Therefore, the suitability of a modification operation

d = op(mp, cn) at mp depends on:

(i) the similarity between cm and the original code co ,

(ii) the similarity between cm and the modified code of the previous successful modifi-

cations, and

(iii) the diversity between cm and the modified code of the previous failed modifications.

If the suitability score of d is greater than a threshold θ, this work applies it to the

program and validate it by tests. Otherwise, it could be quickly discarded without actual

executing tests.

Given a modification point mp and its original source code co , let D = Df ∪Ds be the

previous modifications at mp, where Df is the set of failed modifications, and Ds is the set

of successful modifications. For a modification operation d = op(mp, cn), the suitability

score of attempting d at mp is measured as Equation 5.2.

suitability score(d) =
α(suit(cm)) + β(1− unsuit(cm))

α + β
(5.2)

where cm is the modified code obtained by applying d . In Equation 5.2, suit(cm) tells how

d is suitable to be applied at mp. It depends on the similarity of cm with the original code,

as well with the code obtained by successful modifications. unsuit(cm), instead, shows

how d is unsuitable to be applied at mp, and it is given by the similarity of cm and the

failed modifications. Specifically, suit(cm) and unsuit(cm) are measured as Equation 5.3

and Equation 5.4, respectively.

suit(cm) = max(similarity(cm , co), max
ds∈Ds

similarity(cm , cds)) (5.3)

unsuit(cm) = max
df∈Df

similarity(cm , cdf ) (5.4)
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Figure 5.2: The process of APR with the two proposed heuristic rules

In Equation 5.3 and Equation 5.4, cds and cdf are the modified code of a success-

ful operation ds ∈ Ds and of a failed operation df ∈ Df , respectively. Overall, if

suitability score(d ,mp) > θ, d is applied to the program and validated by executing tests

(θ is a hyperparameter of the approach). Otherwise, d is eliminated without actually exe-

cuting tests. Without loss of generality, any function which can measure the similarity of

two sequences can be used in these equations. The impact of different similarity functions

is experimented and shown in Section 5.6.2.

5.4.2 Applying the Heuristic Rules in Repairing Variability Faults

Figure 5.2 shows the general process of APR when the proposed heuristic rules are applied.

In general, for correctly selecting modification points, both the suspicious scores (measured

by FL techniques) and fixing scores (continuously updated based on the intermediate

validation results) are leveraged in the modification point navigation step. After that, the

APR tool generates modification operations for the selected points. This work does not

propose any new modification generation approach, but those proposed by existing APR

tools are leveraged; however, this work modifies the tools by adding mechanisms to decide

whether to apply the generated modification to the program based on its suitability score.

The suitability of a modification is calculated according to its similarity with the original

code and the previously attempted modifications of the selected point. If the suitability

score exceeds a threshold, this work applies that modification. Otherwise, it is excluded.
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Algorithm 5.5: Patch generation algorithm in ProdBasedenhanced

1 Procedure PatchGeneration(pi, Ti, Si)
Input : pi is the product under repair

Ti is the set test suite of product pi

Si is the list of suspicious statements in product pi

Output: Set of valid patches of product pi (Ci)

2 begin

3 Ci ← ∅ //valid patches of product pi

4 testResult ← TestResultInitialization(pi, Ti)

5 while ¬searchStop do

6 mp ← ModificationPointSelection(Si)

7 d ← ModificationOperationGeneration(pi, mp)

8 score← ModificationSuitabilityMeasurement(d , mp)

9 if score > θ then

10 c← PatchConstruction(d , testResult)

11 testResult ← PatchLocalValidation(pi, Ti, c)

12 if ∀t ∈ testResult, t is a passed test then

13 Ci.add(c)

14 end

15 FixingScoreUpdate(mp, testResult)

16 end

17 end

18 return Ci

19 end

ProdBasedenhanced

For the product-based approach, Algorithm 5.5 shows how the proposed heuristic rules

are applied in repairing an individual product of the SPL system, i.e., the procedure of

PatchGeneration for a product pi. The algorithm is a modification of the one shown

in Algorithm 5.2 and described in Section 5.3.1; the new operations are highlighted in

yellow, while the other functions are the same. In this variant of PatchGeneration,

after each repair iteration, the fixing scores of the modification points are updated (line

15) and then they are combined with the suspiciousness scores for precisely selecting

modification points in the next iterations (line 6). In addition, the suitability score of
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each modification operation is measured (line 8) and checked with a threshold (line 9)

before actually applying it and validating it by executing tests (line 10–14).

Furthermore, in ProdBasedenhanced, instead of gradually selecting failing products (in

a random manner as ProdBasedbasic) for repairing, this work sorts and selects the fail-

ing products of the system based on their complexity (Failing product navigation

(ProdNav)). This dissertation hypothesizes that the less complex a product is, the easier

the product can be fixed. This work measures the complexity of a failing product pi ∈ PF

based on its source code size and its tests. The intuition is that the bigger the product

is, the more complex it is. Also, the more failed tests the product has, the more incorrect

behaviors it has. Particularly, the complexity of a product pi ∈ PF having test suite

Ti = Tf ∪Tp is measured by Equation 5.5. In this equation, productSizepi and systemSize

are measured at the statement level. systemSize is the total number of all the statements

in all the features of system S. productSizepi is the number of statements contained in

product pi.

complexity(pi) =

productSizepi
systemSize +

|Tf |
|Ti|

2
(5.5)

SysBasedenhanced

Algorithm 5.6 shows the details of how the heuristics are applied in the system-based

approach. The algorithm is a modification of SysBasedbasic shown in Algorithm 5.4, and

described in Section 5.3.2; the new operations are highlighted in yellow, while the other

functions are the same. The main difference of this variant compared to Algorithm 5.4

is the addition of the fixing scores and modification suitability measurement. After each

repair iteration, the fixing scores of the modification points are updated (line 23), and

then they are combined with the suspiciousness scores for precisely selecting modification

points in the next iterations (line 6). In SysBasedenhanced, the fixing scores are measured

based on the results of all the tests in T of all the products. Additionally, the suitability

score of each modification operation is measured (line 8) and checked with a threshold

(line 9) before actually applying and validating by executing tests.

5.5 Experiment Methodology

To evaluate the proposed approaches in repairing variability bugs of SPL systems, this

chapter aims to answer the following research questions:
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Algorithm 5.6: SysBasedenhanced algorithm

1 Procedure SystemBasedAproach(S, P , T , S)
Input : S is the SPL system under repair

P is the set of products of the system S

T is the set of test suites of the products in P

S is the list of suspicious statement of system S

Output: Set of patches which are valid for all products in P (validPatchSet)

2 begin

3 validPatchSet ← ∅
4 testResultSet ← TestResultsInitialization(P , T )
5 while validPatchSet.size() = 0 and ¬timeout do

6 mp ← ModificationPointSelection(S )

7 d ← ModificationOperationGeneration(S, mp)

8 score← ModificationSuitabilityMeasurement(d , mp)

9 if score > θ then

10 c← PatchConstruction(d , testResultSet)

11 testResultSet ← ∅
12 for pi ∈ P do

13 testResultpi ← PatchLocalValidation(pi, Ti, c)

14 testResultSet .add(testResultpi)

15 end

16 valid ← true

17 for testResultpi ∈ testResultSet do

18 if ∃t ∈ testResultpi, t is a failed test then

19 valid ← false

20 break

21 end

22 end

23 FixingScoreUpdate(mp, testResultSet)

24 if valid then

25 validPatchSet .add(c)

26 end

27 end

28 end

29 return validPatchSet

30 end
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Table 5.3: Benchmarks

SPL System #Products #Avg. tests/product #Buggy versions of the SPL

ZipMe 25 255 55

GPL 99 87 105

ExamDB 8 166 49

Email 27 86 36

BankAccount 34 20 73

• RQ1: Performance Analysis: How effective and efficient are the proposed ap-

proaches (i.e., ProdBasedbasic, SysBasedbasic, ProdBasedenhanced, SysBasedenhanced)

in repairing buggy SPL systems?

• RQ2: Intrinsic Analysis: How do the heuristic rules including failing product nav-

igation (ProdNav), modification point navigation (ModNav), modification suitability

measurement (ModSuit) contribute to the repair performance? How do the hyper-

parameters α and β of modification suitability measurement (ModSuit) impact the

repair performance?

• RQ3: Sensitivity Analysis: How do the characteristics of the SPL systems, such

as the different systems, the number of failing products, and the number of suspicious

statements affect the repair performance?

5.5.1 Benchmarks

To evaluate the proposed variability bug repair approaches, several experiments were

conducted on a public set of benchmarks of variability bugs [5]. Table 5.3 shows the

detailed information the dataset which is used in the experiments of this research. In

total, there are 318 buggy SPL systems, and each of them is considered as input of the

proposed repair approaches.
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5.5.2 Evaluation Procedure and Metrics

Evaluation procedure

Performance analysis.

Experiment setting: The experiments analyzed the performance of repairing variability

bugs of all four proposed approaches: ProdBasedbasic, SysBasedbasic, ProdBasedenhanced,

and SysBasedenhanced in two settings:

• with fault localization (withFL): in this setting, the FL approach VarCop was em-

ployed to detect and rank suspicious statements. Then, the output of VarCop is

used as the input for all four repair approaches.

• without fault localization (withoutFL). This setting aims to analyze the performance

of the APR approaches without the possible negative impact of the third-party FL

tool; therefore, this experiment provides as input to the repair approaches only the

statements which are actually buggy.

In both settings withFL and withoutFL, the time execution limitation of all the approaches

(i.e., timeout in Algorithm 5.1, Algorithm 5.4, and Algorithm 5.6) for fixing a buggy SPL

system is 60 minutes. The searchStop condition of PatchGeneration (Algorithm 5.2 and

Algorithm 5.5) is also set to 60 minutes.1

APR tool selection: Two representative APR tools R, jGenProg [36] and Cardumen [63]

were selected to used as underlying repair tools of the proposed approaches, as explained in

Section 5.3. The two APR tools generate modifications at different levels of code elements

in Java programs. Specifically, jGenProg is the implementation of the popular APR tool

GenProg [18] for Java programs. This tool repairs buggy programs at the statement-

level. It synthesizes patches by taking code statements from the program under repair

and uses an evolutionary strategy to navigate the search space. This means that, for

each generation, a number of best patches (assessed by a fitness function) are selected

for evolution in the next generation. Cardumen, instead, aims at fixing fine-grained

code elements, i.e., it operates at the expression-level. This tool mines the source code

of the program under repair to create repair templates and then uses such templates

for synthesizing patches. In order to generate concrete patches, the placeholders in the

templates are replaced by variables which frequently occur in the modification points. In

1Note that the comparison between product-based and system-based approaches is fair, as

both can use at most 60 minutes.
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Cardumen, a selective search strategy is used to explore the search space. Particularly,

to speed up the search, Cardumen utilizes a probability model to prioritize patches.

There are several reasons for choosing jGenProg and Cardumen. First, they are popular

and representative APR tools for Java programs which are widely used in the related stud-

ies [61, 161, 164–166]. Second, they target fixing buggy code at different levels, statement

and expression levels. Third, they leverage different search strategies, evolutionary and

selective. Finally, they are standalone tools which can be executed if provided with the

Java program source code and a test suite, without requiring any additional data/com-

ponents (e.g., ssFix [126] needs to connect to a private engine or LSRepair [167] requires

run-time code search over Github repositories).

Statistical analysis: The performance of the approaches could be affected by the ran-

domness of APR tools, e.g., the random selection of modification operators and of the

templates, etc. To mitigate the impact of such randomness, each experiment is executed

five times. The statistical analysis is conducted in the experimental results of the setting

withFL whose search space is large and could be highly impacted by the randomness.

Note that the FL phases of these experiments are done only once by VarCop, as its

result is deterministic.

This chapter compares whether the distributions of five results of #Correct fixes (Sec-

tion 5.5.2) of the different executions of the enhanced and basic versions of the approaches

(ProdBasedenhanced vs ProdBasedbasic and SysBasedenhanced vs SysBasedbasic) are sig-

nificantly different by the Mann-Whitney U test [168]. The confidence value is α = 0.05.

The distributions are considered to be significantly different if the p − value returned

by the Mann-Whitney U test is lower than this confidence value. Otherwise, there is no

significant difference. In case of significant difference, the Vargha and Delaney’s Â12 effect

size is used to assess the strength of the significance. Specifically, if Â12 of approach A

and B is greater than 0.5, the results of A are significantly higher (and so better) than

those of the other.

Intrinsic analysis. This experiment studied the impacts of the heuristic rules: Fail-

ing product navigation (ProdNav), Modification point navigation (ModNav), Modification

suitability measurement (ModSuit) by alternatively disabling one of them in ProdBasedenhanced.

In addition, this experiment created different variants of ProdBasedenhanced with differ-

ent similarity functions, suitability parameters, and suitability thresholds (Equation 5.2,

Section 5.4.1) in measuring the suitability of the modification operations. These experi-
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ments were conducted on the different variants of ProdBasedenhanced since this approach

obtained the best performance compared to the other approaches (Section 5.6.1). More-

over, due to the time limitation and the need to repeat each experiment multiple times,

these experiments were conducted on the variability bugs of three systems, BankAccount,

Email, and ExamDB.

Sensitivity analysis. This experiment studied the results of ProdBasedenhanced in re-

pairing variability bugs in different SPL systems. This experiment also studied the impact

of the following factors: the number of failing products and the number of suspicious state-

ments of each buggy SPL system. This experiment categorizes the buggy systems into

different groups based on their number of failing products (resp. number of suspicious

statements) and analyze the repair performance of ProdBasedenhanced of each group.

Metrics

For evaluating the effectiveness of the approaches, #Plausible fixes and#Correct fixes [38,

164, 169, 170] were adopt. Specifically, #Plausible fixes represents the number of buggy

systems obtaining valid patches that make the systems pass all their tests. Instead,

#Correct fixes indicates the number of buggy systems obtaining valid patches that are

also equivalent to the ground-truth patches provided by the benchmark. The number of

plausible fixes was widely used to show how effective an APR technique is: the higher the

number of plausible fixes, the better the APR tool [18, 64]. However, a plausible patch

could still be incorrect due to the inadequacy of the provided test suites [65–68]. Thus,

in recent studies [38, 170], the number of correct fixes has become a more popular metric:

the higher the number of correct fixes, the better the APR approach.

In addition, #Mods/system and Runtime/system are used for evaluating the efficiency

of the approaches. #Mods/system shows the average number of modification operations

that a repair approach attempts to fix a buggy SPL system. Runtime/system reports the

average running time taken by a repair approach to fix a buggy SPL system. Indeed, the

running time has been widely used to compare the efficiency of the APR tools [159, 160,

171]. However, this metric could be unstable and dependent on many variables that are

unrelated to the APR approaches [61]. Thus, this work reports both the average number

of attempts and the average runtime that an APR approach takes to repair a buggy SPL

system to show how efficient the approach is. The less number of modifications and the

less runtime, the better APR approach.
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Table 5.4: RQ1 – The performance of repairing variability bugs of the approaches in the

setting withoutFL (i.e., the correct positions of buggy statements are given)

APR Tool Metrics
Product-based approach System-based approach

ProdBasedbasic ProdBasedenhanced SysBasedbasic SysBasedenhanced

jGenProg

#Correct fixes 38 40 12 28

#Plausible fixes 64 49 37 34

#Mods/system 95 27 18 14

Runtime/system (min) 8.7 6.7 42.1 22

Cardumen

#Correct fixes 40 65 9 24

#Plausible fixes 112 92 42 41

#Mods/system 73 20 13 10

Runtime/system (min) 5.3 3.9 75.1 52

5.6 Experimental Results

5.6.1 RQ1. Performance Analysis

Setting withoutFL

The performance of the FL technique has a major impact on the effectiveness and efficiency

of the APR approaches. The reason is that the APR tools often select the modification

points based on the output of the FL technique (i.e., the suspicious statement ranked

lists) and this could contain statements that are not actually faulty. In this experiment,

to mitigate the impact of the FL phase, this study conducted an experiment in which,

for each buggy SPL system, the APR approaches are given the correct position of the

faulty statements in advance. Table 5.4 shows the performance of the APR approaches in

this setting on the total of 318 variability bugs. Overall, the performance of the product-

based approaches is better than that of the system-based approaches, about 3 times in

effectiveness and 9 times in efficiency. In addition, the heuristic rules help to enhance the

corresponding basic approaches from 30 to 150% in the number of correct fixes and from

30 to 70% in the number of modification operations.

For instance, by leveraging jGenProg to generate patches, ProdBasedbasic can correctly fix

38 buggy systems. Instead, only 12 buggy systems can be correctly fixed by SysBasedbasic.

Using Cardumen, SysBasedbasic can correctly fix 9 buggy systems, however, ProdBasedbasic

can do that for a significantly larger number of systems, i.e., 40 systems. Moreover, the
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product-based approach is also much more efficient than the system-based approach. Par-

ticularly, the Runtime/system of ProdBasedbasic is 5-14 times lower than SysBasedbasic.

These results show that ProdBasedbasic can correctly fix many more variability bugs in

significantly less running time than SysBasedbasic.

One of the main reasons why the product-based approach obtained better results than the

system-based approach is that it can attempt more modification operations, which helps to

increase its possibility of reaching plausible/correct patches. On average, ProdBasedbasic

tried about 73–95 modification operations on a buggy system. Instead, SysBasedbasic

tried 13-18 modification operations, around five times less than ProdBasedbasic. Indeed,

for each modification operation, the product-based approach can quickly evaluate it by

the test suite of one product. In contrast, the system-based approach needs to validate

the modification over all the test suites of all the sampled products. This dynamic val-

idation process is time-consuming. As a result, given the same limitation of execution

time, ProdBasedbasic can attempt many more modification operations and obtain more

plausible/correct fixes.

Although attempting a larger number of modifications, the product-based approach is

still more efficient in terms of running time. In particular, to repair an SPL system,

ProdBasedbasic takes about 7 minutes, while SysBasedbasic takes about 59 minutes. This

demonstrates that executing all the test suites of the system to validate the modifications

in each repair iteration is really ineffective. To improve the performance of the system-

based approach, modifications could be validated by a subset of selected test cases.

Furthermore, the performance of ProdBasedenhanced and SysBasedenhanced is consider-

ably better than the corresponding basic approaches in both effectiveness and efficiency.

For example, with Cardumen, ProdBasedenhanced needs to attempt 20 modification op-

erations for each buggy SPL system to correctly fix 65 bugs. Instead, ProdBasedbasic

must attempt 73 modification operations in each system and correctly fixes only 40 bugs.

Besides, SysBasedenhanced can correctly fix 24 bugs by attempting 10 modifications per

system. In contrast, with a larger number of modifications (i.e., 13 modifications per

system), SysBasedbasic can correctly fix a lower number of bugs, only 9 bugs.

In this setting, the suspicious statement lists of the SPL systems contains only buggy

statements. Thus, the modification points are always correctly selected by all the ap-

proaches in modification point navigation step. However, for the same selected modifi-

cation points, the ModSuit heuristics helps ProdBasedenhanced and SysBasedenhanced to
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Table 5.5: RQ1 – The performance of repairing variability bugs of the approaches in the

setting withFL

APR Tool Metrics
Product-based approach System-based approach

ProdBasedbasic ProdBasedenhanced SysBasedbasic SysBasedenhanced

jGenProg

#Correct fixes 20 37 1 5

#Plausible fixes 49 49 4 7

#Mods/system 144 179 20 30

Runtime/system (min) 19.3 16.2 41.8 44.3

Cardumen

#Correct fixes 13 40 0 1

#Plausible fixes 92 80 3 4

#Mods/system 133 122 23 22

Runtime/system (min) 13.8 15.3 41.3 52.2

avoid attempting a lot of incorrect modification operations and then quickly find the cor-

rect ones. Instead, various incorrect modifications are attempted by ProdBasedbasic and

SysBasedbasic. Consequently, ProdBasedenhanced and SysBasedenhanced can plausibly/-

correctly fix more bugs than ProdBasedbasic and SysBasedbasic. In addition, by avoiding

attempting incorrect modifications, ProdBasedenhanced and SysBasedenhanced can also

reduce the number of modifications and consume less running time to fix a buggy SPL

system compared to the corresponding basic approaches.

Setting withFL

Table 5.5 shows the repairability performance of the proposed APR approaches on the

total of 318 variability bugs in the setting withFL. In this setting, the product-based ap-

proaches also obtain considerably better results than the system-based approaches. They

obtain significantly higher values for#Correct fixes with a significantly lower Runtime/sys-

tem. Furthermore, the heuristic rules of ModNav and ModSuit can help to significantly

boost the effectiveness of both product-based and system-based directions up to five times.

By both APR tools jGenProg and Cardumen, the effectiveness of ProdBasedbasic is higher

than that of SysBasedbasic from 12 to 30 times. For instance, by leveraging jGenProg to

generate patches, ProdBasedbasic can plausibly fix 49 systems. Instead, only 4 systems

can be plausibly fixed by SysBasedbasic. By using Cardumen, SysBasedbasic cannot

correctly fix any buggy system, while ProdBasedbasic can do that for 13 systems. In
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addition, the product-based approach is also much more efficient than the system-based

approach. The Runtime/system of ProdBasedbasic is 2-3 times lower than SysBasedbasic.

Similarly to the discussion for the setting withoutFL, the product-based approach locally

validates each modification by the tests of one product before globally validating it by

the whole test suites of the system. Thus, it can attempt more modification operations

in less running time and efficiently obtain a higher number of plausible/correct fixes.

Notably, by applying the heuristic rules, ProdBasedenhanced improves the number of cor-

rect fixes of ProdBasedbasic from 85% to 207%, and SysBasedenhanced improves the per-

formance of SysBasedbasic up to 5 times. For example, using Cardumen, 40 systems can

be correctly fixed by ProdBasedenhanced, and SysBasedenhanced can correctly fix 1 system;

instead, the corresponding numbers of correct fixes of ProdBasedbasic and SysBasedbasic

are 13 and 0, respectively. Indeed, the validation results of the previous modification op-

erations are very valuable in guiding the APR approaches to correctly select modification

points and avoid attempting unsuitable modifications. For example, with the bug in List-

ing 5.1, after attempting modification MO3 (Table 5.2), the associated modification point

of the buggy statement mp = (BackOut.ExamDataBaseImpl.26, if(students[+ + i]! =

null&&!student[i].backedOut)) is prioritized by ProdBasedenhanced and SysBasedenhanced

to be continuously fixed. Also, the previous attempted modification operations at this

point, yet incorrect such as d = ins aft(mp, this.students = newmain.Student[100])

or the other modification d = ins bef (mp,main.Student[] oldStudents = students) pro-

vide feedback to help ProdBasedenhanced and SysBasedenhanced avoid attempting sim-

ilar incorrect modifications in the next iterations. As a result, the correct modifica-

tion operation for this buggy statement is sooner attempted by ProdBasedenhanced and

SysBasedenhanced.

Moreover, the efficiency of the enhanced approaches and the corresponding basic ap-

proaches is not significantly different, and it greatly depends on the employed APR tools.

For instance, using jGenProg, ProdBasedenhanced takes less runtime to attempt more

modifications to fix a buggy SPL system than ProdBasedbasic. For instance, for a

buggy SPL system, ProdBasedenhanced attempts 179 modifications in 16 minutes, while

ProdBasedbasic takes 19 minutes to attempt 144 modifications. In contrast, leveraging

Cardumen, compared to ProdBasedbasic, ProdBasedenhanced takes a slightly higher run-

time to attempt less number of modifications. ProdBasedbasic spends about 14 minutes

on 133 modifications to fix a variability bug, while ProdBasedenhanced spends about 15
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Table 5.6: RQ1 – Statistical analysis regarding #Correct fixes of ProdBasedenhanced vs

ProdBasedbasic and SysBasedenhanced vs SysBasedbasic in different experiment executions

– withFL setting

Product-based approach System-based approach

p-value Â12 p-value Â12

jGenProg 0.01 1 0.02 1

Cardumen 0.01 1 0.08 -

minutes to attempt 122 modifications.

In fact, the number of modification operations is not always proportional to the runtime.

The reason is that for a system, the modification operations of the approaches could try

to modify code of different modification points. In setting withFL, the modification points

are selected on the list of suspicious statements returned by VarCop, which could con-

tain not only buggy but also non-buggy statements. With the guidance of the heuristics

ModNav , the modification points selected by the enhanced approaches are different from

the corresponding basic ones. The differences in the selected modification points could

lead to the number of affected products being different, which leads to the variation in the

runtime of the approaches; this is because only the products affected by the modifications

need to re-execute the tests. However, by not being significantly different in #Mods/sys-

tem and Runtime/system, ProdBasedenhanced and SysBasedenhanced can correctly fix a

much higher number of buggy systems compared to the basic approaches.

Statistical analysis

In general, the enhanced variants of both product-based and system-based approaches con-

sistently obtain significantly better effectiveness than the corresponding basic variants.

Table 5.6 shows the statistical analysis of the differences of ProdBasedenhanced com-

pared to ProdBasedbasic, and SysBasedenhanced compared to SysBasedbasic regarding

the number of correct fixes. For product-based approaches, the number of correct fixes

of ProdBasedenhanced and ProdBasedbasic is significantly different (p − value = 0.01).

Also, in all the experiment executions, ProdBasedenhanced always obtains higher re-

sults (Â12 = 1). Similarly, SysBasedenhanced’s performance is considerably better than

SysBasedbasic if jGenProg is used. However, by using Cardumen, the results of these
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Table 5.7: RQ2 – Impact of disabling each heuristic rule in ProdBasedenhanced

ProdBasedenhanced Not applied rule

ProdNav ModNav ModSuit

#Correct fixes 34 32 32 14

#Plausible fixes 54 51 48 63

#Mods/system 148 150 147 158

Runtime/system (min) 2.2 1.8 1.8 2.3

system-based approaches are not significantly different. The reason is that the results of

Cardumen in these experiments are not good, only 1 or none of the systems can be fixed.

Thus, it cannot show the differences in the approaches’ results.

5.6.2 RQ2. Intrinsic Analysis

Impact of the heuristic rules

Table 5.7 shows how the heuristic rules impact the performance of ProdBasedenhanced.

As expected, ProdBasedenhanced obtains the highest performance when all the heuristic

rules are enabled. Its effectiveness could decrease from 6% to 60% if one of the heuristics is

disabled. Particularly, ProdBasedenhanced can correctly fix 34 bugs in three experimental

systems, BankAccount, Email, and ExamDB. If ProdNav or ModNav are disabled, the

number of correct fixes is 32. Instead, if ModSuit is disabled, only 14 variability bugs can

be correctly fixed.

Indeed, if the ModSuit is disabled, more modifications are attempted and so the number

of plausible fixes can significantly increase. For instance, ProdBasedenhanced obtains 54

plausible fixes, while this number is increased by 17% (63 plausible fixes) if ModSuit

is disabled. This result indicates that without lightweight evaluating and eliminating

incorrect modifications, there is a high rate of over-fitting or false-positive patches. Indeed,

in this variant of ProdBasedenhanced, multiple incorrect modification operations have been

attempted. These modification operations can cause the system to pass all the available

tests, but they are incorrect patches.

Moreover, the running time of ProdBasedenhanced does not significantly vary when dis-
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Table 5.8: RQ2 – Impact of the similarity functions in modification suitability measure-

ment

Metrics Cosine N-gram

Longest

common

subsequence

Levenshtein Jaccard

#Correct fixes 28 31 32 34 36

#Plausible fixes 52 47 58 54 56

#Mods/system 154 154 153 148 145

Runtime/system (min) 2.2 2.3 2.0 2.1 2.3

abling the heuristic rules. For instance, ProdBasedenhanced takes about 2.2 minutes to

repair a buggy SPL system. If one of the heuristic rules is disabled, the fixing process

of this approach consumes from 1.8 to 2.3 minutes. Indeed, enabling and disabling the

heuristic rules affect the selected modification points in the repair process. This leads

to the numbers of affected products of each system being different. Thus, the runtime

slightly fluctuates in these experiments due to the differences in the number of the affected

and tested products.

Impact of the similarity functions in ModSuit

This experiment built different variants of ProdBasedenhanced with different similarity

functions for measuring the suitability of the modification operations in ModSuit (Equa-

tion 5.3 and 5.4, Section 5.4.1). As seen in Table 5.8, ProdBasedenhanced obtains the

highest number of correct fixes when the Jaccard is used as the similarity function. In-

stead, when Cosine or N-gram is leveraged, ProdBasedenhanced’s effectiveness is lowest,

although the number of modification operations is the highest. For instance, by Jaccard,

the number of correct fixes is 36, while the results of Cosine and N-gram are 28 and 31,

respectively.

There are two reasons for these results of the different similarity functions. First, multiple

bugs can be fixed by minor changes [163]. That is the reason why similarity functions like

Levnshtein or Jaccard, which reflect the edit distances of the sentences, could be helpful.

Second, the order of the tokens in the modified code of the modifications could not be an
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important factor in deciding the similarity in the program repair topic. For example, the

correct modification and the buggy source code could share several variables, operators,

etc., but these tokens are in different orders in the code statements. Metrics such as

Cosine or N-gram, which consider the order of tokens in measuring the similarity, could

not work well in this case.

Impact of the suitability threshold θ in ModSuit

Figure 5.3 shows the repair performance of ProdBasedenhanced with different values of

threshold θ in deciding whether a modification is suitable for applying into the program

(rule ModSuit). In general, the number of plausible fixes decreases when the threshold

increases (see Figure 5.3a). Specifically, if θ is equal to 0, the number of plausible fixes is

68, while if θ is 0.9, this number is 24. This is because the higher the threshold is, the more

strict ModSuit is in evaluating the suitability of the modifications. This leads to multiple

modifications being eliminated without being applied to the system and validated against

the tests. Indeed, as shown in Figure 5.3b, increasing the threshold leads to a considerable

decrease in the number of modification operations, from 157 modifications when θ is 0,

to 27 modifications when θ is 0.9. Therefore, the number of plausible fixes decreased.

The previous observations can be explained as follows. ProdBasedenhanced obtains the

highest number of correct fixes with θ = 0.5 (see Figure 5.3a). For instance, if the threshold

increases from 0 to 0.5, the number of correct fixes increases from 13 to 34. However, if

the threshold continuously increases from 0.5 to 0.9, the number of correct fixes decreases

from 34 to 24. Indeed, with the small value of the threshold θ = 0, multiple incorrect

modification operations could be attempted, and then APR tools stop searching when a

plausible fix of the system is reached. However, that fix could be still incorrect. Thus,

although the number of plausible fixes is high, multiple of those fixes are over-fitting and

incorrect. On the other hand, with the large threshold value θ = 0.9, the approach could

eliminate multiple promising modification operations. This leads to the decrease in the

numbers of both plausible and correct fixes. Overall, to ensure that the best performance

of ProdBasedenhanced, the threshold θ should be 0.5.
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Figure 5.3: RQ2 – Impact of the suitability threshold θ on ProdBasedenhanced’s perfor-

mance

Impact of the hyperparameters α and β in ModSuit

In order to analyze how the suitability parameters impact ProdBasedenhanced’s perfor-

mance, experiments were conducted with five different values of the pair (α, β) in Equa-

tion 5.2, as shown in Figure 5.4. Specifically, for a modified code cm , if the pair (α, β)

is (1, 0) or (0, 1), it means that the value of only suit(cm) or unsuit(cm) is used to eval-

uate its suitability. Instead, when both α and β are greater than 0, it means that both

suit(cm) and unsuit(cm) are considered in the evaluation, with different importance; us-

ing (2, 1) gives more importance to suit(cm), while using (1, 2) gives more importance to
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Figure 5.4: RQ2 – Impact of the suitability parameters (α, β) on ProdBasedenhanced’s

performance

unsuit(cm). Finally, when the setting is (1, 1), it means that the two aspects have the

same importance.

These different parameters do not significantly affect ProdBasedenhanced’s efficiency, as

the numbers of modification operations and running time just vary slightly, as demon-

strated in Figure 5.4b. However, ProdBasedenhanced’s effectiveness is considerably af-

fected. ProdBasedenhanced obtains the highest #Correct fixes when both suit(cm) and

unsuit(cm) are considered and suit(cm) has a higher priority (α = 2 and β = 1) (Fig-

ure 5.4a). In addition, the repairing result of ProdBasedenhanced is the lowest when α = 0
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and β = 1. This variant of ProdBasedenhanced can correctly fix 14 buggy systems, half

of those fixed when both suit(cm) and unsuit(cm) are considered. Indeed, when α = 0,

the suitability of a new modification is evaluated by only considering the feedback of the

previous failed attempts without considering the original code of the corresponding modi-

fication point. The previous attempts could guide ProdBasedenhanced to decide incorrect

modifications, i.e., the modifications similar to the failed modifications can be eliminated.

However, by only previous failed attempts, there is little or even no evidence about correct

modifications, which is reflected by the similarity with the original code [162, 163].

5.6.3 RQ3. Sensitivity Analysis

Impact of the characteristics of the different SPL systems

Overall, the repair performance of ProdBasedenhanced varies by varying the characteris-

tics of the SPL system under repair. As shown in Figure 5.5, BankAccount is the system

obtaining the highest number of correct patches. The reason is that BankAccount is a

small system with multiple similar functions. This could be helpful for redundancy-based

APR tools such as jGenProg or Cardumen to find patches in the product under repair

itself. Instead, variability bugs in the ExamDB system are fixed by the least number of

modification operations. The reason is that the sampled set of this system is small (i.e.,

8 products) and only about one or two failing products for each buggy version of this sys-

tem. Thus, by the product-based approach, the number of failing products of ExamDB

system that have been attempted to be fixed is much less than the other systems.

Furthermore, the running time of the APR approach depends on not only the number of

attempted modification operations but also the size of the system and the test suites. For

instance, although each bug in the BankAccount system is attempted by 185 modification

operations, which is three times larger than the number of modifications attempted to fix

a bug in the ZipMe system, the fixing time of a bug in ZipMe is 15 times larger than that

of BankAccount. The reason is that the ZipMe system contains 3,460 statements which is

much larger than BankAccount. Also, the test suite of each sampled product of ZipMe is

13 larger than that of a product of BankAccount. As a result, although less modifications

are attempted for it, ZipMe still costs more execution time.
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Figure 5.5: RQ3 – The performance of ProdBasedenhanced in fixing variability bugs of

different SPL systems

Impact of the number of failing products

Figure 5.6 shows the impact of the number of failing products on the effectiveness and effi-

ciency of ProdBasedenhanced. The performance of ProdBasedenhanced could be impacted

by various factors such as the nature of code, the size of systems, etc. Thus, to focus on

the impact of the number of failing products, this experiment analyzes the performance

of ProdBasedenhanced on the buggy versions of one system, BankAccount. This exper-

iment separates buggy versions of BankAccount system into different groups according

to their numbers of failing products (as reported on x-axis of the plots in Figure 5.6).
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Figure 5.6: RQ3 – Impact of the number of failing products on ProdBasedenhanced’s

performance – BankAccount

Moreover, as the numbers of buggy SPL systems in different groups are different, for ease

of comparison, this work reports the ratio of fixes (Figure 5.6a), the average number of

modification operations, and the average running time (Figure 5.6b) of the bugs in each

group. Overall, ProdBasedenhanced obtains the best effectiveness when the bugs cause

failures for about 4-20 failing products (12%-60% total sampled products of the system)

(see Figure 5.6a). In addition, if the number of failing products increases, the number of

modification operations and the running time will also increase (see Figure 5.6b).

Indeed, for the cases where multiple sampled products are affected by the bugs (i.e.,
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the number of failing products is large), the APR tool could need to attempt fixing

multiple of them. This increases the attempted modification operations and running

time. Intuitively, attempting to repair more products and trying with more modification

operations increases the probability of reaching plausible/correct fixes. For the systems

containing only one or three failing products, 24% of the bugs are correctly fixed. If

the bugs affect about 11-20 products of the system, 37% of the bugs are correctly fixed.

However, if there are too many products affected by the bugs, such bugs could be difficult

to be fixed. Specifically, if the bugs cause failures for more than 21 products of the system,

only 11% of the bugs are correctly fixed.

Impact of the number of suspicious statements

Similarly to the previous experiment in Section 5.6.3, to focus on the impact of the

number of suspicious statements, this experiment analyzes the repair performance of

bugs in one system, BankAccount, and report the ratio of fixes. Figure 5.7 shows how

ProdBasedenhanced’s performance is impacted by the size of suspicious statements. In

general, the number of modification operations and running time increases proportionally

with the increase of the number of suspicious statements. (see Figure 5.7b). Specifically,

if there are less than 55 suspicious statements, 36 modification operations are attempted

to fix a bug. Instead, if the number of suspicious statements increases 1.5 times, i.e., more

than 76 suspicious statements, about 251 modifications are attempted to repair a bug.

The ratio of plausible fixes decreases, yet the ratio of correct fixes increases when the size

of suspicious space increases (see Figure 5.7a). For systems with less than 55 suspicious

statements, 45% of the bugs are plausibly fixed, and 18% of them are correctly fixed.

Instead, if the SPL system has more than 76 suspicious statements, the values of these

metrics are 39% and 31%, respectively. This result shows that with a small number

of suspicious statements, the APR tool has a high possibility of selecting the buggy

statements correctly. Then, it can quickly find a plausible patch and stop searching

(high ratio of plausible fixes, yet low ratio of correct fixes). However, with a larger set

of suspicious statements, by multiple attempts, ProdBasedenhanced has more evidence

from previous attempts to find correct modification points and suitable modifications.

This could help to increase the ratio of correct fixes. Note that the search process could

be much more complicated (i.e., a large amount of modification operations have been

attempted) when the search space is too large. This can also negatively impact the
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Figure 5.7: RQ3 – Impact of the number of suspicious statements on ProdBasedenhanced’s

performance – BankAccount

repair performance; indeed, the ratio of correct fixes declines from 40% to 31% when the

suspicious statements set increases from 66-75 statements to more than 76 statements.

5.6.4 Threats to Validity

The main threats to the validity of the proposed approaches are: internal, construct, and

external validity threats [172].

Threats to internal validity mainly lie in the correctness of the implementation of the

proposed approaches. To reduce this threat, the proposed approaches were implemented
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on top of a popular APR framework, Astor [48]. The source code was also carefully

reviewed and made public so that other researchers can double-check and reproduce the

experiments.

Threats to construct validity mainly lie in the rationality of the assessment met-

rics. To reduce this threat, the popular metrics that have been widely used in previous

studies [38, 61, 159, 160, 164, 169–171] were chosen for evaluating both effectiveness and

efficiency of the approaches.

Threats to external validity mainly lie in the benchmark used in the experiments.

There is only one dataset of artificial bugs is used in the experiments. Thus, the obtained

results on artificial faults can not be generalized for large-scale SPL systems containing

real faults. To mitigate the threat, five SPL systems which target different application

domains and widely-used in existing studies [13, 16, 155], were chosen. In future work, I

am planning to collect more real-world variability bugs in larger SPL systems to evaluate

the proposed approaches to address these threats. As another external threat, all systems

in the benchmark are developed in Java. Therefore, it cannot claim that similar results

would have been observed in other programming languages. This is a common threat

of several studies on configurable software systems [83, 156]. Another threat lies in the

selected APR tools and experiments in only single-bug systems. To reduce the threat,

this study chose two representative APR tools targeting at different levels, and they are

widely used in the existing studies [61, 161, 164–166]. In the future, I also plan to conduct

experiments with more APR tools and multiple-bug cases.

5.7 Summary

Although the bugs in SPL systems could cause severe damage in multiple products, au-

tomatically addressing such bugs has not been investigated thoroughly. This chapter

introduces two approaches, product-based and system-based, for fixing variability bugs in

SPL systems. For the product-based adaptation method, each failing product is fixed in-

dividually, and the obtained patches are propagated and validated on the other products

of the system. For system-based, the whole SPL system is considered for repair at the

same time, i.e., the APR tool is employed to repair the whole system in each iteration. In

addition, to improve the performance of APR tools in navigating modification points and

selecting suitable modifications, this chapter proposes several heuristic rules leveraging

intermediate validation results of the repaired programs. The experimental results on a
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dataset of 318 variability bugs of 5 popular SPL systems show that the product-based

adaptation method is better than the system-based adaptation method about 20 times in

the number of correct fixes. Notably, the heuristic rules could improve the performance

of both adaption methods by 30-150% in the number of correct fixes and 30-50% in the

number of attempted modification operations.
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Chapter 6

Conclusion
The contribution of the dissertation: SPL systems have gained momentum in the

software industry. By the configurable mechanism and reusable parts, SPL engineering

allows developers to quickly and easily create multiple products tailored to individual

customers’ requirements. This helps to reduce costs and improve the performance of the

software development process. However, due to the variability inherent to SPL systems,

testing and debugging these systems is very challenging. Although automated debugging

in single-system engineering has been studied in-depth, debugging SPL systems remain

primarily unexplored.

This dissertation aims to shed light on automated debugging SPL systems by focusing on

three tasks: false-passing product detection, variability fault localization, and variability

fault repair. The contributions of the dissertation can be concluded as follows:

First, the dissertation proposed Clap, an approach for detecting false-passing products of

buggy SPL systems. Chapter 3 formulated the false-passing products detection problem.

To solve this problem, Clap proposed six measurable attributes to assess the strength

of the failure indications in the products (Section 3.3). These indications refer to the

implementation and test quality ; the stronger the indications, the more likely the product

is false-passing .

The experimental results show that Clap achieves up to 96% Precision in detecting

false-passing products. This means, among 10 products predicted as false-passing prod-

ucts by Clap, there are more than 9 products which are indeed false-passing ones.

Chapter 3 also evaluates the capability of Clap in mitigating the negative impact of

false-passing products on the FL performance. The experiments were conducted on

two state-of-the-art variability fault localization approaches with the five most popu-

lar SBFL ranking metrics [25, 92]. Interestingly, Clap can significantly improve their

performance in ranking buggy statements by up to 30%. This shows that Clap can

greatly mitigate the negative impact of false-passing products on localizing variability

bugs and help developers find bugs much faster. The tool is made public at https:

// ttrangnguyen. github. io/ CLAP/ .
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Second, the dissertation proposed VarCop, an approach for localizing variability faults.

Section 4.2 presented the observations about the visibility/invisibility of this kind of fault

in SPL systems. Chapter 4 also formulated the conditions (Buggy PC ) to make variability

fault visible in the products of a buggy SPL system and introduced important properties

for detecting Buggy PC . For a buggy SPL system, VarCop localizes variability bugs

by detecting Buggy PC to narrow the search space. Then, VarCop considers both the

overall and detailed test results to figure out the positions of the faults.

The experimental results show that VarCop significantly outperformed the baselines in

all the studied metrics. For the cases containing a single incorrect statement (single-bug),

the experimental results show that VarCop significantly outperformed S-SBFL, SBFL,

and Arrieta et al. [6] in all 30/30 metrics by 33%, 50%, and 95% in Rank, respectively.

Impressively, VarCop correctly ranked the bugs at the top-3 positions in +65% of the

cases. In addition, VarCop effectively ranked the buggy statements first in about 30%

of the cases, which doubles the corresponding figure of SBFL.

For localizing multiple incorrect statements (multiple-bug), after inspecting the first state-

ment in the ranked list resulted by VarCop, up to 10% of the bugs in a system can be

found, which is 2 times and 10 times better than S-SBFL and SBFL, respectively. Es-

pecially, the experimental results also show that in 22% and 65% of the cases, VarCop

effectively localized at least one buggy statement of a system at top-1 and top-5 posi-

tions. From that, developers can iterate the process of bugs detecting, bugs fixing, and

regression testing to quickly fix all the bugs and assure the quality of SPL systems. The

tool is made public at https: // ttrangnguyen. github. io/ VARCOP/ .

Third, the dissertation proposed product-based and system-based approaches for automat-

ically repairing variability faults. Section 5.3 introduced the detailed algorithms of these

two approaches, and their enhanced versions with embedded heuristic rules were intro-

duced in Section 5.4. To improve fault repair performance, the heuristic rules leverage

the intermediate repair information to guide the process of navigating modification points

and selecting suitable modifications.

The experimental results show that the product-based approach is considerably bet-

ter than the system-based approach by 12 to 30 times in the number of plausible

fixes and about 20 times in the number of correct fixes. Interestingly, the heuris-

tics could help to boost the performance of both product-based and system-based ap-

proaches by up to 200%. For instance, by adopting the APR tool Cardumen [63],
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ProdBasedbasic and SysBasedbasic can correctly fix 13 and 0 systems respectively,

while ProdBasedenhanced and SysBasedenhanced correctly fix 40 and 1 systems re-

spectively. Moreover, the repair performance could be negatively impacted by FL tools

since the modification points are selected based on FL results which are often imper-

fect. To mitigate the impact of the third-party FL tool, the effectiveness of the repair

approaches is assessed when the correct FL results are provided. The experiment results

show that the product-based approach is better than the system-based approach about 3

times in effectiveness and 9 times in efficiency. In addition, the proposed heuristic rules

help to increase 30-150% the number of correct fixes and decrease 30-70% the number

of attempted modification operations of the corresponding basic approaches. The tool is

made public at https: // github. com/ ttrangnguyen/ SPLRepair .

The limitation of the dissertation: For each proposed approach, this dissertation

carefully analyzes the contribution of each component in the approaches to the whole

performance, as well as the sensitivity of the approaches with the different inputs to

figure out their weaknesses. Some limitations can be mentioned:

• Although the dataset uses the systems widely used in the existing work, this dataset

only contains artificial bugs of Java SPL systems, so the similar results cannot be

concluded for real-world faults.

• All systems in the benchmark are developed in Java. Therefore, it cannot claim

that similar results would have been observed in other programming languages or

technologies.

• To guarantee the reliability of SPL systems’ test results, the flaky test problem is

still challenging and has not been addressed.

Future works: From the results achieved in the dissertation, as well as the remaining

limitations, there are some research directions for future work:

• Collecting real-world variability bugs in larger SPL systems to more thoroughly eval-

uate the techniques. Abal et al. [76] have collected and presented a dataset of 98

real-world variability bugs in Linux, Apache, BusyBox, and Marlin systems. These

bugs are essential for evaluating the QA tools of SPL systems. However, most of

these bugs are compilation bugs, and they are not provided with test suites. Thus,

this dataset does not fit well with the approaches leveraging testing information
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like SBFL, Clap, or VarCop, etc. In practice, collecting real-world bugs is very

challenging. Thus, it requires in-depth analysis and design to collect the bug sys-

tematically and automatically. In future work, I plan to investigate the bug-fixing

commits which are often logged and reported. These commits could be used to trace

back to find the bug-introducing commits and then the buggy versions of the systems

can be obtained.

• Extending the experiments with more APR tools. Section 5.6 evaluates the variability

bug repair performance with jGenProg and Cardumen. These tools can repair the

program at different levels, i.e., statement and expression levels. However, there are

much more APR tools, especially with the development of large language models

and generative AI, multiple new APR tools have been introduced. In the next study,

I plan to conduct more experiments with diverse APR tools to thoroughly evaluate

the contribution of the heuristic rules and extend the conclusions.

• Handling the flaky test problem to improve the quality of the test suites. For the de-

bugging approaches leveraging test results, the quality of the test suites is an essential

factor. The low-quality test suites could result in both coincidental correctness and

flaky test problems. The coincidental correctness leads to under-counting the failed

tests and over-counting the passed tests, negatively impacting the performance of

FL approaches. In this dissertation, Clap has been introduced to address this phe-

nomenon at the product level. Meanwhile, the flaky tests yield both passing and

failing results despite zero changes to the code or test [173]. This unreliability of

the test results provides incorrect indications for FL and APR techniques. Thus

diminishing their performance. In the future, I plan to analyze the symptoms of the

flaky tests and design a specialized approach to detect these tests in SPL systems.
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[33] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.

A classification and survey of analysis strategies for software product lines. ACM

Computing Surveys (CSUR), 47(1):1–45, 2014.

[34] Maggie Hamill and Katerina Goseva-Popstojanova. Analyzing and predicting ef-

fort associated with finding and fixing software faults. Information and Software

Technology, 87:1–18, 2017.
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