

Very-Near-Field Solutions for Antenna Measurement Problems

Chamber on your Desktop

EMxpert

 EMC diagnostic tool to rapidly diagnose and solve EMC/EMS/EMI problems with real-time PCB emission analysis

RFxpert

 APM tool enabling to quickly evaluate performance and optimize designs with real-time antenna performance characterization

Fundamentals

- High-density planar antenna array
- High-speed electronic switching
- Very-near-field measurements
- Far-field calculation
- "Real-time" real-fast
- No chamber

ŝ	SED	25	9-0 6+10W		D-0 ++11W		0.0	C ST	0.0	ANT25
dud tury	Cž	6LD 95UW	1	9CUM	R	D-O	5	0-0	O O	0-0
S	400	8	0-0	Par	0-0 91,04	Part	0-0 91.0W	S S S S S S S S S S S S S S S S S S S	0 0	0 O
0.0	C	500 000	3	0-0 ZSUMY	5 <u>8</u>	0:0	O BEILL	0 0 +1114	3	0 0 ZUW
8	0-0 911W	C.	0-0	8	0-0 ZGUNY	8	0-0	8 <u>8</u>	0-0	e.e.
0-0 9/1W	C <u>ě</u>	0.00 2.00	1	0-0	2	0-0 950W	:5	O O ZILIW	:5	0-0 EUW
25	0-0	3	0-0 55.0W	Series Series	e o	o Maria	0.0	-	9.0 WW	CIN
		Ú69 								

Introduction to Near-Field Theory

Existing Solutions

Anechoic Chamber

- Slow testing
- High CAPEX and OPEX
- Real-estate
- Qualified personnel

Reverberation Chamber

- Fast testing
- No pattern
- Qualified personnel

What is Near-Field?

- Anything not in the far-field
- Far-field is where the pattern is not changing with the distance
- Common definitions
- Usually stay out of the reactive region

Functionality

300 MHz to 6.0 GHz

- Far-field patterns and bisections
 - EIRP / TRP / TIS Proxy
 - Circular and linear polarization
- Very-near-field insights
 - Amplitude
 - Phase
 - Polarity
- Gain and efficiency
- DLL programming

RF Test Solution

Typically looking for far-field parameters

- Gain, efficiency, pattern are basic measures
- More complex applications such as Envelope Correlation, Axial Ratio and Beam Forming
- Debugging via near-field

Far-Field Measurements

- Far-field site far and demanding a large area
- Open-air-test-site (OATS) avoids reflections
 - Almost impossible in an urban environment
- Anechoic Chambers

Near-Field to Far-Field Transformation

Near-field measurement

- Smaller footprint
- Can be as accurate as far-field

Near to Far projections

- Plane Wave/Modal Expansion
- Magnetic currents
- Genetic algorithms and more

- The radiation of the antenna can be described in terms of angular spectrum of waves
- Based on Huygen's principle
- Fourier transform from near-field space to propagation vectors in far-field

- An antenna can propagate in all directions
- The phases and amplitudes in each directions will vary
- In the near field all elements are interdependent

- Sample near field elements along a planar surface
- Measure amplitude and phase in each point
- Combination of phase fronts

 Use sampled points to reconstruct new phase fronts

 No difference between this and the original phase front that was sampled

- Separate the various phase fronts or plane waves based on their weightings
- This set of plane waves in all directions is the plane wave spectrum

Based on Maxwell's equations and a source-less boundary condition we can construct the following equations

$$\mathbf{E}(x, y, z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{A}(k_x, k_y) e^{-j\mathbf{k}\cdot\mathbf{r}} dk_x dk_y$$
$$\mathbf{H}(x, y, z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{k} \times \mathbf{A}(k_x, k_y) e^{-j\mathbf{k}\cdot\mathbf{r}} dk_x dk_y$$

The term **k** may be called the wave number vector and the terms in the integration represent a uniform plane wave propagating in the **k** direction $\mathbf{k} (\mathbf{k} - \mathbf{k}) = -i\mathbf{k} \cdot \mathbf{r}$

$$\mathbf{A}(k_x,k_y)\,e^{-j\,\mathbf{k}\cdot}$$

And $\mathbf{A}(k_x,k_y)$ can be determined by ,

$$A_{x}(k_{x},k_{y}) = e^{jk_{z}z_{t}} \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E_{x}(x,y,z_{t}) e^{j(k_{x}x+k_{y}y)} dx dy$$

$$A_{y}(k_{x},k_{y}) = e^{jk_{z}z_{t}} \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} E_{y}(x,y,z_{t}) e^{j(k_{x}x+k_{y}y)} dx dy$$

Planar Near-Field Benefits

$$\mathbf{E}(x, y, z) = \frac{je^{-jkr}}{r} k_z \mathbf{A}(k_x, k_y)$$

- Simple Fourier transform
- Easy to calculate quickly
- Easy to sample data

A Very-Near-Field Implementation

Very-Near-Field Challenges

- Coupling unavoidable so make it predictable
- Static array has constant effect for each sample

Very-Near-Field Implementation

- Array of probes
- Addressable array of probes makes very-near-field sampling very fast and repeatable
- Small loops not sensitive but very broadband, with good isolation and polarization specifications
- Reference channel for phase measurement of active devices

Very-Near-Field Implementation

Results with Ideal Data

- Still have limitations of finite planar scans
- Hemispherical results
- Limited angular coverage
- E-theta always reduces to zero at horizon

Aggregate Node

- Combined scan results for full spherical far-field view
- User defined elevation for asymmetrical devices

Visualizing interference in the near-field

Resonance and mutual coupling

- Antenna position
- Loading and field perturbation

Effects of Surrounding Material

Aggregated Very-Near-Field

 Multiple planar measurements combined together to provide larger effective scan area

- Multiple planar scans do not need to be co-planar
 - Can used to created 3D scan surfaces or even enclosed surfaces

Aggregated Very-Near-Field

RFX and RFX2

- Fast measurements
 - Continuous "real-time"
 - Single scan < 1 second</p>
- Compact tabletop instrument
- Cost effective solution
- Easy-to-use by any engineer

High Accuracy

Repeatability

- +/- 0.2 dB from one measurement to the next
- +/- 0.5 dB within the white test zone

- Relative accuracy
 - +/- 0.5 dB comparative measurements

Absolute Accuracy Out-of-the-Box

Aligned to the Atlanta CTIA Satimo chamber

- Re-align your RFxpert to your chamber
 - Portfolio of devices
 - $-2\sigma = +/-1.1$ dB at 700 MHz (better at higher frequency)

Adjusted Deviation between Chamber and RFX2

Absolute Accuracy Out-of-the-Box

- Aligned to the Atlanta CTIA Satimo chamber
- Re-align your RFxpert to your chamber
 - One device
 - $2\sigma = +/-0.54 \text{ dB}$ at 700 MHz

Technical Specifications

Configuration

Frequency Scan

Gain, efficiency, EIRP and TRP of a device at a discrete frequency and across a range of frequencies through remote control of a VNA

Frequency	Efficiency	Gain	EIRP
1880.00	73.91	6.66	6.66

Circular Polarization

• LHCP / RHCP / AR over a range of ±30° from the center line

Aggregate Node

- Combined frequency scanning results for full spherical far-field view
- User defined elevation for asymmetrical devices

Very-Near-Field

Insights into design issues

Comparison with Simulation

Simulation

Agilent EDA simulation

Toyo corporation (EMSCAN Representative) Tokyo, Japan June 19, 2012

real-time results

3D Farfield

Comparison with Chamber Results

Mobile Phone Efficiency

Note: Low band offset applied by customer

Mobile Phone Efficiency

Note: Low band offset applied by customer

Mobile Phone Efficiency

Note: Low band offset applied by customer

Patterns of Various Mobile Phones

Passive Antenna Results

47 antennas measured in CTIA MVG Satimo chamber

- 20 PIFAs, 10 Patch designed by EMSCAN
- 17 acquired antennas are a mix of different sorts

PRAD Offset Table

Re-alignment process

		Band 5				
Freq 1		Chamber	EMSCAN	Error	Applied Error	Adjusted
	1	18.81	19.36	-0.55	-0.78	18.58
	1	18.77	19.78	-1.01	-0.78	19.00
	1	18.69	19.47	-0.78	-0.78	18.69
	2	19.49	20.04	-0.55	-0.64	19.40
	2	19.56	20.30	-0.74	-0.64	19.66
	2	19.63	20.26	-0.63	-0.64	19.62
	3	19.33	20.71	-1.38	-1.42	19.29
	3	19.40	20.72	-1.32	-1.42	19.30
	3	19.38	20.93	-1.55	-1.42	19.51

Test Applications

Cellular Phone

Power and pattern measurements at a single channel or a series of channels through the remote control of a Base Station Emulator

Channel Range:	128 251		
Broadcast Channel	128		
Traffic Channel	128	Add	128 : (824.2000 MHz) 139 : (826.4000 MHz)
		Remove	250 : (848.6000 MHz)
PCI Level	10	Add	3.00
, de teres		Remove	7.00
Multiple Samples	3	1	

loT

Fast pre-certification

Cellular Base Station Antenna

Testing of Large or Long Antennas

Phase Center

Any customized pulse up to 60-second timeout

Scan Settings	Modula	ation Settings	Separation	Select scan range
© CW	//CDMA	V		
🔘 Bur	sty/TDI	MA/etc		
Adv	vanced			
- Advan	ced Set	ting		
Ť	imeout	50	ms (10 to 60	.000)
The	eshold	-55.94	dBm (-70 to	38)
F	loldoff	10	µs (5 to 50)	
10 N		L	er veret forst fan de ser faller fo	

Phased Array Antenna

Phase balancing

Picture from www.mathworks.com/

GPS Antenna

Circular Polarization

MIMO

- Very-near-field for antenna diversity and mutual coupling
- Far-field for real-time tuning
- Correlation
 - Envelope and pattern correlation
 - Hemispherical RFX
 - Spherical RFX2

Smart Meters

Connectivity with

- GSM, Mobile
- WLAN / WiFi
- ZigBee
- M-Bus
- Custom
- Others ...
- Measurement of antennas
- Measuring active device with long timeout

Figure 2-3 Cell relay meter with flexible, dual band (850 MHz and 1900 MHz) antenna affixed to interior surface of the meter cover.

Conclusion

- Ability to see surface currents
- Very fast scanning
- Repeatable
- No chamber
- Low maintenance
- Easy to use

RFxpert Advantages

- Interaction effects in real-time
- Very-near-field measurements
- Fast and repeatable
- Low CAPEX

Contact Us

PCB GraphTech Vietnam info@pcb-graphtech.com.vn (028) 6292 1170

